1
|
Cardinali F, Botta C, Harasym J, Reale A, Ferrocino I, Boscaino F, Orkusz A, Milanović V, Garofalo C, Rampanti G, Aquilanti L, Osimani A. Tasting of traditional Polish fermented cucumbers: Microbiology, morpho-textural features, and volatilome. Food Res Int 2024; 177:113851. [PMID: 38225126 DOI: 10.1016/j.foodres.2023.113851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
In the present study, naturally fermented and unpasteurized cucumbers (Cucumis sativus L.) collected from 4 producers located in different regions of Poland were studied. The fermented cucumbers were characterized by significant nutritional features in terms of polyphenols content and antioxidant activity. Microbiological analyses revealed active bacterial populations of lactococci, thermophilic cocci, lactobacilli, and coagulase-negative cocci. The microbiological characterization of cucumber and brine samples through metataxonomic analysis allowed the dominant species to be detected, being Lactococcus and Streptococcus in cucumbers, and Lactiplantibacillus, Leuconostoc, Pediococcus, Secundilactobacillus, and Lentilactobacillus in brine. The isolation activity offered a clear picture of the main active lactic acid bacteria at the end of fermentation, being Pediococcus parvulus and Lactiplantibacillus plantarum group. All the studied isolates showed a good attitude in fermenting a cucumber-based broth, thus suggesting their potential application as starter or adjunct cultures for guided cucumber fermentation. Moreover, for the same isolates, strong aminopeptidase activity (due to leucine arylamidase and valine arylamidase) was observed, with potential effect on the definition of the final sensory traits of the product. Only a few isolates showed the ability to produce exopolysaccharides in synthetic medium. Of note, the presence of the hdcA gene in some Pediococcus ethanolidurans isolates also confirmed the need for a thorough characterization of starter candidates to avoid undesired adverse effects on consumer's health. No isolate showed the production of bacteriocins against Listeria innocua used as surrogate for Listeria monocytogenes. Based on the results of Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry analysis, a rich and complex volatilome, composed by more than 80 VOCs, was recognized and characterized. In more detail, the detected compounds belonged to 9 main classes, being oxygenated terpenes, alcohols, terpenes, ketones, acids, aldehydes, esters, sulfur, and sesquiterpenes.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Cristian Botta
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy; Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
2
|
Baev V, Apostolova E, Gotcheva V, Koprinarova M, Papageorgiou M, Rocha JM, Yahubyan G, Angelov A. 16S-rRNA-Based Metagenomic Profiling of the Bacterial Communities in Traditional Bulgarian Sourdoughs. Microorganisms 2023; 11:803. [PMID: 36985376 PMCID: PMC10058899 DOI: 10.3390/microorganisms11030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Sourdoughs (SDs) are spontaneously formed microbial ecosystems composed of various species of lactic acid bacteria (LAB) and acid-tolerant yeasts in food matrices of cereal flours mixed with water. To date, more than 90 LAB species have been isolated, significantly impacting the organoleptic characteristics, shelf life, and health properties of bakery products. To learn more about the unique bacterial communities involved in creating regional Bulgarian sourdoughs, we examined the metacommunities of five sourdoughs produced by spontaneous fermentation and maintained by backslopping in bakeries from three geographic locations. The 16S rRNA gene amplicon sequencing showed that the former genus Lactobacillus was predominant in the studied sourdoughs (51.0-78.9%). Weissella (0.9-42.8%), Herbaspirillum (1.6-3.8%), Serratia (0.1-11.7%), Pediococcus (0.2-7.5%), Bacteroides (0.1-1.3%), and Sphingomonas (0.1-0.5%) were also found in all 5 samples. Genera Leuconostoc, Enterococcus, Bacillus, and Asaia were sample-specific. It is interesting to note that the genus Weissella was more abundant in wholegrain samples. The greatest diversity at the species level was found in the former genus Lactobacillus, presented in the sourdough samples with 13 species. The UPGMA cluster analysis clearly demonstrated similarity in species' relative abundance between samples from the same location. In addition, we can conclude that the presence of two main clusters-one including samples from mountainous places (the cities of Smolyan and Bansko) and the other including samples from the city of Ruse (the banks of the Danube River)-may indicate the impact of climate and geographic location (e.g., terrain, elevation, land use, and nearby water bodies and their streams) on the abundance of microbiome taxa. As the bacterial population is crucial for bread standardization, we expect the local bakery sector to be interested in the relationship between process variables and their effect on bacterial dynamics described in this research study.
Collapse
Affiliation(s)
- Vesselin Baev
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| | - Miglena Koprinarova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Department of Catering and Nutrition, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Galina Yahubyan
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Angel Angelov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
4
|
Kpodo KR, Chaudhari A, Schreier LL, Miska KB, Proszkowiec-Weglarz M. The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens. Animals (Basel) 2022; 12:ani12212901. [PMID: 36359025 PMCID: PMC9656831 DOI: 10.3390/ani12212901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Most probiotics possess bile salt hydrolase enzymes and may increase bile acid excretion and negatively affect fat digestion and absorption. Therefore, the study objective was to determine the time course effects of a commercial probiotic (P) FloraMax-B11 (FM) supplementation on bile acid neosynthesis and enterohepatic circulation in broiler chickens. Fertile Ross 708 eggs were incubated under standard commercial conditions. At hatch, chicks (n = 550) were randomly assigned to 5 treatment groups (n = 5 replicates per treatment group) with 22 birds per pen. The 5 treatment groups consisted of: control group (C, normal water from hatch to 35 days of age without supplements); P3, water supplemented with FM for the first 3 days post-hatch followed by normal water until day 35; P10, water supplemented with FM for the first 10 days post-hatch followed by normal water until day 35; P35, water supplemented with FM from hatch to day 35; and AGP, water supplemented with antibiotic growth promoter (AGP) from hatch until day 35. Ileum, liver, and plasma were collected at hatch, days 3, 10, 21, and 35 post-hatch. The relative mRNA expression of genes involved in bile acid synthesis (CYP7A1, CYP8B1, FXR, FGFR4, and FGF19) and transport (ASBT, I-BABP, OSTα, OSTβ, and BSEP) as well as ileal deoxycholic acid and plasma cholic acid were determined. There was no FM and AGP interaction for any of the response criteria. No FM or AGP effects were observed (p > 0.05) for any genes, except FGF19, which expression was increased (p < 0.0001) in AGP compared to P35. No FM or AGP effects were observed (p > 0.05) for levels of deoxycholic and cholic acids. However, all the genes, deoxycholic acid, and plasma cholic acid were affected by age (p < 0.0001). In general, the data indicate that FM did not negatively impact bile acid metabolism and enterohepatic circulation, which appeared to be age dependent. However, more research should be conducted to confirm these results and investigate the effects of FM on bile acid metabolism, fat digestion, and intestinal microbiota in broiler chickens.
Collapse
Affiliation(s)
- Kouassi R. Kpodo
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
- Correspondence:
| | - Atul Chaudhari
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Lori L. Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B. Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
|
6
|
Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres. Sci Rep 2020; 10:5853. [PMID: 32246087 PMCID: PMC7125115 DOI: 10.1038/s41598-020-62610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of the gut microbiota in human health has led to an increased interest to study probiotic bacteria. Fermented food is a source of already established probiotics, but it also offers an opportunity to discover new taxa. Four strains of Weissella sp. isolated from Indian fermented food have been genome sequenced and classified into the species W. cibaria based on whole-genome phylogeny. The genome of W. cibaria strain 92, known to utilise xylooligosaccharides and produce lactate and acetate, was analysed to identify genes for oligosaccharide utilisation. Clusters including genes involved in transportation, hydrolysis and metabolism of xylooligosaccharides, arabinooligosaccharides and β-glucosides were identified. Growth on arabinobiose and laminaribiose was detected. A 6-phospho-β-glucosidase clustered with a phosphotransferase system was found upregulated during growth on laminaribiose, indicating a mechanism for laminaribiose utilisation. The genome of W. cibaria strain 92 harbours genes for utilising the phosphoketolase pathway for the production of both acetate and lactate from pentose and hexose sugars but lacks two genes necessary for utilising the pentose phosphate pathway. The ability of W. cibaria strain 92 to utilise several types of oligosaccharides derived from dietary fibres, and produce lactate and acetate makes it interesting as a probiotic candidate for further evaluation.
Collapse
|
7
|
Pérez-Ramos A, Werning ML, Prieto A, Russo P, Spano G, Mohedano ML, López P. Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts. Front Microbiol 2017; 8:2393. [PMID: 29259592 PMCID: PMC5723342 DOI: 10.3389/fmicb.2017.02393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 02/02/2023] Open
Abstract
Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (P gut ) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of P gut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for P gut functionality. This demonstrates that: (i) P gut is required for expression of the gut cluster, (ii) P gut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans-complementation for activation of P gut exists in L. plantarum but not in L. casei.
Collapse
Affiliation(s)
- Adrian Pérez-Ramos
- Biological Research Center (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria L. Werning
- Biological Research Center (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Center of Research and Transfer of Catamarca (CITCA), Consejo Nacional de Investigaciones Científicas y Técnicas, Catamarca, Argentina
| | - Alicia Prieto
- Biological Research Center (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pasquale Russo
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Mari L. Mohedano
- Biological Research Center (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paloma López
- Biological Research Center (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
8
|
Pérez-Ramos A, Mohedano ML, López P, Spano G, Fiocco D, Russo P, Capozzi V. In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. Int J Mol Sci 2017; 18:E1588. [PMID: 28754020 PMCID: PMC5536075 DOI: 10.3390/ijms18071588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023] Open
Abstract
Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-β-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial β-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6's performance, the isogenic β-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the β-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial β-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial β-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria.
Collapse
Affiliation(s)
- Adrián Pérez-Ramos
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - María Luz Mohedano
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Paloma López
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy.
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
- Promis Biotech srl, Via Napoli 25, 71122 Foggia, Italy.
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
9
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 2017; 15:e04664. [PMID: 32625421 PMCID: PMC7010101 DOI: 10.2903/j.efsa.2017.4664] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
EFSA is requested to assess the safety of a broad range of biological agents in the context of notification for market authorisation as sources of food and feed additives, food enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide a harmonised generic pre-assessment to support safety risk assessments performed by EFSA's scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge are assessed. Identified safety concerns for a taxonomic unit are, where possible and reasonable in number, reflected as 'qualifications' in connection with a recommendation for a QPS status. The list of QPS recommended biological agents was reviewed and updated in the current opinion and therefore becomes the valid list. The 2016 update reviews previously assessed microorganisms including bacteria, yeasts and viruses used for plant protection purposes following an Extensive Literature Search strategy. The taxonomic units related to the new notifications received since the 2013 QPS opinion, were periodically evaluated for a QPS status and the results published as Statements of the BIOHAZ Panel. Carnobacterium divergens, Lactobacillus diolivorans, Microbacterium imperiale, Pasteuria nishizawae, Pediococcus parvulus, Bacillus flexus, Bacillus smithii, Xanthomonas campestris and Candida cylindracea were recommended for the QPS list. All taxonomic units previously recommended for the 2013 QPS list had their status reconfirmed as well their qualifications with the exception of Pasteuria nishizawae for which the qualification was removed. The exclusion of filamentous fungi and enterococci from the QPS evaluations was reconsidered but monitoring will be maintained and the status will be re-evaluated in the next QPS Opinion update. Evaluation of bacteriophages should remain as a case-by-case procedure and should not be considered for QPS status.
Collapse
|
10
|
Pérez-Ramos A, Mohedano ML, Puertas A, Lamontanara A, Orru L, Spano G, Capozzi V, Dueñas MT, López P. Draft Genome Sequence of Pediococcus parvulus 2.6, a Probiotic β-Glucan Producer Strain. GENOME ANNOUNCEMENTS 2016; 4:e01381-16. [PMID: 27979937 PMCID: PMC5159570 DOI: 10.1128/genomea.01381-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of the probiotic Pediococcus parvulus 2.6, a lactic acid bacterial strain isolated from ropy cider. The bacterium produces a prebiotic and immunomodulatory exopolysaccharide, and this is the first strain of the P. parvulus species whose genome has been characterized.
Collapse
Affiliation(s)
| | - M Luz Mohedano
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | - Ana Puertas
- Department of Applied Chemistry, University of Basque Country (UPV/EHU), San Sebastián, Spain
| | - Antonella Lamontanara
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Luigi Orru
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - M Teresa Dueñas
- Department of Applied Chemistry, University of Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paloma López
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| |
Collapse
|
11
|
Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 4: suitability of taxonomic units notified to EFSA until March 2016. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Abrunhosa L, Inês A, Rodrigues AI, Guimarães A, Pereira VL, Parpot P, Mendes-Faia A, Venâncio A. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int J Food Microbiol 2014; 188:45-52. [DOI: 10.1016/j.ijfoodmicro.2014.07.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
13
|
Varsha KK, Priya S, Devendra L, Nampoothiri KM. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Appl Biochem Biotechnol 2014; 172:3402-13. [PMID: 24532445 DOI: 10.1007/s12010-014-0779-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022]
Abstract
Thirty-six lactic acid bacteria belong to Lactococcus, Lactobacillus, Enterococcus, and Pediococcus were isolated, and the spectrum of antifungal activity was verified against Fusarium oxysporum (KACC 42109), Aspergillus niger (KACC 42589), Fusarium moniliforme (KACC 08141), Penicillium chrysogenum (NII 08137), and the yeast Candida albicans (MTCC 3017). Three isolates, identified as Pediococcus pentosaceus (TG2), Lactobacillus casei (DY2), and Lactococcus (BSN) were selected further, and their antifungal compounds were identified by ESI-MS and HPLC analysis as a range of carboxylic acids along with some unidentified, higher molecular weight compounds. An attempt to check out the shelf life extension of wheat bread without fungal spoilage was performed by fermenting the dough with the Lactococcus isolate. Apart from growth in low pH and tolerance to bile salts, probiotic potential of these three isolates was further substantiated by in vitro screening methods that include transit tolerance to the conditions in the upper human gastrointestinal tract and bacterial adhesion capacity to human intestinal cell lines.
Collapse
Affiliation(s)
- Kontham Kulangara Varsha
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Trivandrum, 695 019, Kerala, India
| | | | | | | |
Collapse
|
14
|
Falck P, Precha-Atsawanan S, Grey C, Immerzeel P, Stålbrand H, Adlercreutz P, Karlsson EN. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7333-7340. [PMID: 23822770 DOI: 10.1021/jf401249g] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To compare xylans from forestry with agricultural origins, hardwood xylan (birch) and cereal arabinoxylan (rye) were hydrolyzed using two variants of the xylanase RmXyn10A, full-length enzyme and catalytic module only, from Rhodothermus marinus . Cultivations of four selected bacterial species, using the xylooligosaccharide (XOS) containing hydrolysates as carbon source, showed selective growth of Lactobacillus brevis DSMZ 1264 and Bifidobacterium adolescentis ATCC 15703. Both strains were confirmed to utilize the XOS fraction (DP 2-5), whereas putative arabinoxylooligosaccharides from the rye arabinoxylan hydrolysate were utilized by only B. adolescentis. Escherichia coli did not grow, despite its capability to grow on the monosaccharides arabinose and xylose. It was also shown that Pediococcus parvulus strain 2.6 utilized neither xylose nor XOS for growth. In summary, RmXyn10A or its catalytic module proved suitable for high-temperature hydrolysis of hardwood xylan and cereal arabinoxylan, producing XOS that could qualify as prebiotics for use in functional food products.
Collapse
Affiliation(s)
- Peter Falck
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lindström C, Holst O, Nilsson L, Öste R, Andersson KE. Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express 2012; 2:66. [PMID: 23234432 PMCID: PMC3560120 DOI: 10.1186/2191-0855-2-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 12/16/2022] Open
Abstract
Intake of dietary fibres may reduce the prevalence of physiological risk factors of the metabolic syndrome, such as high plasma lipid levels and low-grade inflammatory state. Dietary fibres are usually of plant origin however microbial exopolysaccharides (EPSs) have analogue structures that could potentially exert similar physiological effects. Pediococcus parvulus 2.6 (Pd 2.6) excretes a ropy EPS and has previously shown probiotic potential. The aim of this work was to evaluate physiological effects of Pd 2.6 and its EPS in vivo. The live Pd 2.6 (both the ropy and non-ropy isogenic variant) and its purified EPS were fed to hypercholesterolemic LDL-receptor deficient mice for 6 weeks to investigate their effects on cholesterol levels and the inflammatory tone of the animals. Both variants of Pd 2.6 survived passage through the mouse gut fulfilling an important criterion of probiotics. The ability to produce EPS was conferring an advantage to survival (faecal recovery of 3.7 (1.9-8.7) vs. 0.21 (0.14-0.34) *108 CFU, P < 0.001, median and 25th and 75th percentiles). The ropy Pd 2.6 decreased the levels of soluble vascular cell adhesion molecule-1 compared to the EPS alone (591 ± 14 vs. 646 ± 13 ng/ml, P < 0.05). An increase in liver weight in mice fed the purified EPS was observed, but with no change in liver lipids. No changes in blood lipids were detected in any group. Further the EPS induced growth of the caecal tissue and increased the amount of caecal content showing bulking properties like that of a dietary fibre.
Collapse
Affiliation(s)
- Cecilia Lindström
- Division of Biotechnology, Department of Chemistry, Lund University, Box 124, Lund, SE-221 00, Sweden
- Aventure AB, Scheelevägen 22, Box 719, Lund, SE-220 07, Sweden
| | - Olle Holst
- Division of Biotechnology, Department of Chemistry, Lund University, Box 124, Lund, SE-221 00, Sweden
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Box 124, Lund, SE-221 00, Sweden
| | - Rickard Öste
- Aventure AB, Scheelevägen 22, Box 719, Lund, SE-220 07, Sweden
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund University, Box 124, Lund, SE-221 00, Sweden
| | - Kristina E Andersson
- Department of Experimental Medical Science, Lund University, BMC D12, Lund, SE-221 84, Sweden
| |
Collapse
|
16
|
In vitrocomparison of commensal, probiotic and pathogenic strains ofEnterococcus faecalis. Br J Nutr 2012; 108:2043-53. [DOI: 10.1017/s0007114512000220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vivostudies have provided evidence that micro-organisms have important roles in immunological, digestive and respiratory functions, conferring health benefits on the host. Severalin vitromethods have been advised for the initial screening of microbes with potential health effects. The objective of the present study was to employ suchin vitromethodology to characterise different strains ofEnterococcus faecalis. The characteristics of a commercial product marketed as a probiotic, Symbioflor-1 (Symbiopharm), were compared with the characteristics of both pathogenic and commensal strains. Tolerance towards low pH and viability after exposure to human gastric and duodenal juices were assayed. Symbioflor-1 was the most susceptible strain to these treatments when compared with the otherE. faecalisstrains. Furthermore, Symbioflor-1 exhibited the lowest adhesion capacity to intestinal epithelial cells (IEC) and mucus. Competitive binding studies using heparin indicated that glycosaminoglycans might be involved in the adhesion to IEC, but also that differences in these putative bacteria–host interactions do not cause the relative low adhesion capacity of Symbioflor-1. Maturation of dendritic cells (DC) after exposure to bacteria was assayed as an indication of an immunomodulatory effect. All strains induced a moderate elevation of the DC maturation markers CD83 and CD86; however, no strain-specific differences were detected. Correlations betweenin vitroandin vivostudies are discussed. Althoughin vitroassaying is a rational starting point for the selection of microbes with a potential health benefit, it is emphasised that human clinical trials are the definite tool for establishing probiotic status.
Collapse
|
17
|
Elizaquível P, Sánchez G, Salvador A, Fiszman S, Dueñas MT, López P, Fernández de Palencia P, Aznar R. Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1,3)-β-D-glucan. J Dairy Sci 2011; 94:3271-8. [PMID: 21700011 DOI: 10.3168/jds.2010-4026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 12/31/2022]
Abstract
Probiotic cultures are increasingly being incorporated into a wide variety of food products. Although lactobacilli and bifidobacteria are the most frequently used, other lactic acid bacteria (LAB) have been reported to be potential probiotics. Of these, the cider isolates Pediococccus parvulus (strains 2.6 and CUPV22) and Lactobacillus suebicus CUPV221 produce a 2-branched (1,3)-β-d-glucan exopolysaccharide that decreases serum cholesterol levels and affects the activation of human macrophages. For this reason, these 3 strains were incorporated into yogurt, orange juice, and 2 juice-milk beverages to evaluate the effect of the food matrix on the resistance of these strains to simulated gastrointestinal tract conditions. Our results showed that incorporation of the LAB did not significantly affect the physical and rheological properties of the food matrices tested. When incorporated in yogurt, LAB strains population decreased by 2 to 3 log orders of magnitude during the shelf life of the product (28 d). However, no significant decrease was observed in the juice and juice-milk beverages during the same storage period, except for Lb. suebicus, whose viability decreased by 3 log orders of magnitude. When strains were subjected to gastrointestinal tract conditions, a decrease in the survival was observed at the lower pH (1.8). However, incorporation of these LAB strains into orange juice increases their resistance to lower pH conditions, thus improving survival to gastrointestinal stress. Moreover, a protective effect was observed for P. parvulus CUPV22 and 2.6 to gastric stress in juice-milk beverages and to gastrointestinal stress in yogurt. Lactobacillus suebicus CUPV221 did not survive when incorporated into yogurt and juice-milk beverage.
Collapse
Affiliation(s)
- P Elizaquível
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner 50, 46100 Burjasot, Spain
| | | | | | | | | | | | | | | |
Collapse
|