1
|
Jiang X, Wang J. Biological Control of Escherichia coli O157:H7 in Dairy Manure-Based Compost Using Competitive Exclusion Microorganisms. Pathogens 2024; 13:361. [PMID: 38787213 PMCID: PMC11124295 DOI: 10.3390/pathogens13050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Animal manure-based compost is a valuable organic fertilizer and biological soil amendment. To ensure the microbiological safety of compost products, the effectiveness of competitive exclusion microorganisms (CE) in reducing Escherichia coli O157:H7 in dairy manure-based compost was evaluated. METHODS A cocktail of E. coli O157:H7 strains were inoculated into dairy compost along with CE strains isolated from compost, and the reduction in E. coli O157:H7 by CE was determined in compost with 20%, 30%, and 40% moisture levels at 22 °C and 30 °C under laboratory conditions, as well as in fall, winter, and summer seasons under greenhouse settings. RESULTS Under lab conditions, CE addition resulted in 1.1-3.36 log reductions in E. coli O157:H7 in compost, with enhanced pathogen reduction by higher moisture and lower temperature. In the greenhouse, >99% of the E. coli O157:H7 population in compost with ≥30% moisture due to cross-contamination can be effectively inactivated by CE within 2 days during colder seasons. However, it took ≥8 days to achieve the same level of reduction for heat-adapted E. coli O157:H7 cells. CONCLUSIONS Our results demonstrated that the competitive exclusion of microorganisms can be an effective tool for controlling foodborne pathogens in compost and reducing the potential for soil and crop contamination.
Collapse
Affiliation(s)
- Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jingxue Wang
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
2
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Ru G, Simmons M, De Cesare A, Escamez PF, Suffredini E, Ortiz‐Pelaez A, Ordonez AA. Evaluation of alternative methods of tunnel composting (submitted by the European Composting Network) II. EFSA J 2024; 22:e8745. [PMID: 38681740 PMCID: PMC11046411 DOI: 10.2903/j.efsa.2024.8745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.
Collapse
|
3
|
Wang X, Zheng J, Luo L, Hong Y, Li X, Zhu Y, Wu Y, Bai L. Thermal inactivation kinetics of Listeria monocytogenes in milk under isothermal and dynamic conditions. Food Res Int 2024; 179:114010. [PMID: 38342535 DOI: 10.1016/j.foodres.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
Thermal processing is a widely used method to ensure the microbiological safety of milk. Predictive microbiology plays a crucial role in quantifying microbial growth and decline, providing valuable guidance on the design and optimization of food processing operations. This study aimed to investigate the thermal inactivation kinetics of Listeria monocytogenes in milk under both isothermal and dynamic conditions. The thermal inactivation of L. monocytogenes was conducted under isothermal and non-isothermal conditions in sterilized and pasteurized milk, with and without background microbiota, respectively. Furthermore, a secondary model was developed between the shoulder effect and temperature, which was then integrated into the dynamic model. The results showed that L. monocytogenes grown in Tryptic Soy Yeast Extract Broth (TSBYE) prior to thermal inactivation exhibited higher heat resistance compared to cells grown in sterilized milk at isothermal temperatures of 60.0, 62.5, and 65℃. Moreover, the presence of background microbiota in milk significantly enhanced the heat resistance of L. monocytogenes, as evidenced by the increased D-values from 1.13 min to 2.34 min, from 0.46 min to 0.53 min, and from 0.25 min to 0.34 min at 60.0, 62.5, and 65 °C, respectively, regardless of whether the background microbiota was inactivated after co-growth or co-inactivated with L. monocytogenes. For non-isothermal inactivation, the one-step dynamic model based on the log-linear with shoulder model effectively described the microbial inactivation curve and exhibited satisfactory model performance. The model developed contributes to improved risk assessment, enabling dairy processors to optimize thermal treatment and ensure microbiological safety.
Collapse
Affiliation(s)
- Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiaming Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Linyin Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqi Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
4
|
Liu S, Qiu Y, Su G, Sheng L, Qin W, Ye Q, Wu Q. Enhanced heat tolerance of freeze-dried Enterococcus faecium NRRL B-2354 as valid Salmonella surrogate in low-moisture foods. Food Res Int 2023; 173:113232. [PMID: 37803547 DOI: 10.1016/j.foodres.2023.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
In microbial studies of low-moisture foods (LMFs, water activity less than 0.85), freeze-dried bacteria benefit us to inoculate LMFs without introducing extra water or altering food physiochemical properties. However, the freeze-drying process would bring unavoidable damage to bacterial cells and results in less-resistant inoculum that are unlikely to be qualified in microbial studies. Herein, we enhanced bacterial heat tolerance by subjecting the cells to mild heat (42-50 °C) to counteract the reduced heat tolerance and survivability of freeze-dried bacteria. Enterococcus faecium NRRL B-2354 (E. faecium), a Salmonella surrogate in LMFs, was used as the target microorganism because it was widely accepted in microbial validation of thermal pasteurizing LMFs. Three types of LMFs (peanut powder, protein powder, and onion powder) were used as LMFs models to validate the freeze-dried E. faecium in comparison with Salmonella enterica Enteritidis PT 30 (S. Enteritidis) prepared by the traditional aqueous method. The heat tolerance (D65℃ value) of E. faecium increased at all treatments and peaked (+31.48 ± 0.13%) at temperature-time combinations of 45 °C-60 min and 50 °C-5 min. Survivability of freeze-dried inoculum and its heat tolerance retained well within 50 d storage. The freeze-dried E. faecium was prepared in this study brought equal or higher heat tolerance (D85℃ or D75℃) than S. Enteritidis in tested LMFs models. For instance, the D85℃ of freeze-dried E. faecium (heat-treated at 50 °C for 5 min) and S. Enteritidis in whole egg powder are 35.56 ± 1.52 min and 28.41 ± 0.41 min, respectively. The freeze-dried E. faecium with enhanced heat tolerance appears to be a suitable Salmonella surrogate for dry-inoculating LMFs. Our protocol also enables industry-scale production of freeze-dried inoculum by broth-cultivation method combined with mild-heat treatment.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yan Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
5
|
Limoges MA, Neher DA, Weicht TR, Millner PD, Sharma M, Donnelly C. Differential Survival of Escherichia coli and Listeria spp. in Northeastern U.S. Soils Amended with Dairy Manure Compost, Poultry Litter Compost, and Heat-Treated Poultry Pellets and Fate in Raw Edible Radish Crops. J Food Prot 2022; 85:1708-1715. [PMID: 34855938 DOI: 10.4315/jfp-21-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Composted or heat-treated biological soil amendments of animal origin (BSAAOs) can be added to soils to provide nutrients for fresh produce. These products lower the risk of pathogen contamination of fresh produce compared with the use of untreated BSAAOs; however, meteorological conditions, geographic location, and soil properties can influence the presence of pathogenic bacteria or their indicators (e.g., generic Escherichia coli) and allow potential for produce contamination. Replicated field plots of loamy or sandy soils were tilled and amended with dairy manure compost (DMC), poultry litter compost (PLC), or no compost (NoC) over two field seasons and noncomposted heat-treated poultry pellets (HTPPs) during the second field season. Plots were inoculated with a three-strain cocktail of rifampin-resistant E. coli (rE. coli) at levels of 8.7 log CFU/m2. Direct plating and most-probable-number methods measured the persistence of rE. coli and Listeria spp. in plots through 104 days postinoculation. Greater survival of rE. coli was observed in PLC plots in comparison to DMC plots and NoC plots during year 1 (P < 0.05). Similar trends were observed for year 2, when rE. coli survival was also greater in HTPP-amended plots (P < 0.05). Survival of rE. coli depended on soil type, and water potential and temperature were significant covariables. Listeria spp. were found in NoC plots, but not in plots amended with HTPPs, PLC, or DMC. Radish data demonstrate that PLC treatment promoted the greatest level of rE. coli translocation compared with DMC and NoC treatments (P < 0.05). These results are consistent with findings from studies conducted in other regions of the United States, and they inform northeast produce growers that composted and noncomposted poultry-based BSAAOs support greater survival of rE. coli in field soils. This result has the potential to affect the food safety risk of edible produce grown in BSAAO-amended soils as a result of pathogen contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Marie A Limoges
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| | - Deborah A Neher
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Thomas R Weicht
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Patricia D Millner
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Catherine Donnelly
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| |
Collapse
|
6
|
Analysis of migration of pathogenic drug-resistant bacteria to soils and groundwater after fertilization with sewage sludge. PLoS One 2021; 16:e0256936. [PMID: 34914715 PMCID: PMC8675741 DOI: 10.1371/journal.pone.0256936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The paper discusses the analysis of the effect of using sewage sludge for fertilization on the level of soil and groundwater contamination with drug-resistant bacteria. Other sanitary contaminants in these environments were also analysed. Composted sewage sludge was introduced into the sandy soil over a period of 6 months. The examinations were conducted under conditions of a lysimetric experiment with the possibility of collecting soil leachates (in natural conditions). The following doses of sewage sludge were used: 0, 10, 20, 30 and 40 t/ha calculated per experimental object containing 10 kg of sandy soil. The research were carried out within the time frame of one year. Dactylis glomerata grass was grown on the fertilized soils. In soils and leachates from soils (which may have polluted groundwater) collected from fertilized experimental objects, the sanitary condition and quantity of drug-resistant bacteria (mainly from the families Enterobacteriaceae and Enterococcus) were analysed one year after fertilization. Their drug resistance to selected antibiotics was also analysed based on current recommendations. The study showed that fertilization with sewage sludge (even after stabilization and hygienization) results in contamination of soil and infiltrating waters with many species of drug-resistant pathogenic bacteria. The lowest level of contamination of soil and water environment was found after the application of sewage sludge at a dose of 10 t/ha. The isolated drug-resistant strains of intestinal bacteria were less sensitive to older generations of antibiotics including cefazolin, ampicillin, and co-amoxiclav.
Collapse
|
7
|
Persistence of Salmonella enterica and Enterococcus faecium NRRL B-2354 on Baby Spinach Subjected to Temperature Abuse after Exposure to Sub-Lethal Stresses. Foods 2021; 10:foods10092141. [PMID: 34574255 PMCID: PMC8472226 DOI: 10.3390/foods10092141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
The exposure of foodborne pathogens such as Salmonella enterica to a sub-lethal stress may protect bacterial cells against distinct stresses during the production of leafy greens, which can constitute potential health hazards to consumers. In this study, we evaluated how the prior exposure of S. enterica to sub-lethal food processing-related stresses influenced its subsequent persistence on baby spinach under cold (4 °C for 7 days) and temperature abuse (37 °C for 2 h + 4 °C for 7 days) conditions. We also compared the survival characteristics of pre-stressed S. enterica and Enterococcus faecium NRRL B-2354 as its surrogate on baby spinach. A cocktail of three S. enterica serovars, as well as S. Typhimurium ATCC 14028 wild type and its ΔrpoS mutant, and E. faecium NRRL B-2354, was first exposed to sub-lethal desiccation, oxidation, heat shock, and acid stresses. Afterward, baby spinach was inoculated with unstressed or pre-stressed cells at 7.0 log CFU/sample unit, followed by 7-day storage under cold and temperature abuse conditions. The unstressed S. enterica (fresh cells in sterile 0.85% saline) decreased rapidly within the first day and thereafter persisted around 5.5 log CFU/sample unit under both conditions. The desiccation-stressed S. enterica showed the highest bacterial counts (p < 0.05) compared to other conditions. The unstressed S. enterica survived better (p < 0.05) than the oxidation- and acid-stressed S. enterica, while there were no significant differences (p > 0.05) between the unstressed and heat-shocked S. enterica. Unlike the wild type, temperature abuse did not lead to the enhanced survival of the ΔrpoS mutant after exposure to desiccation stress, indicating that the rpoS gene could play a critical role in the persistence of desiccation-stressed S. enterica subjected to temperature abuse. E. faecium NRRL B-2354 was more persistent (p < 0.05) than the pre-stressed S. enterica under both conditions, suggesting its use as a suitable surrogate for pre-stressed S. enterica by providing a sufficient safety margin. Our results demonstrate the merit of considering the prior exposure of foodborne pathogens to sub-lethal stresses when validating the storage conditions for leafy greens.
Collapse
|
8
|
EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel), Koutsoumanis K, Allende A, Bolton DJ, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman LM, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Escámez PF, Ortiz‐Peláez A, Ashe S, Alvarez‐Ordóñez A. Evaluation of Alternative Methods of Tunnel Composting (submitted by the European Composting Network). EFSA J 2020; 18:e06226. [PMID: 32774510 PMCID: PMC7404150 DOI: 10.2903/j.efsa.2020.6226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two alternative methods for the production of compost from certain category 3 animal by-products (catering waste and processed foodstuffs of animal origin) were assessed. The first proposed a minimum temperature of 55°C for 72 h; the second 60°C for 48 h, each with a maximum particle size of 200 mm. The proposed composting processes were assessed by the BIOHAZ Panel for their efficacy to achieve a reduction of 5 log10 of Enterococcus faecalis or Salmonella Senftenberg (775W, H2S negative) and a 3 log10 reduction of the infectivity titre of thermoresistant viruses, such as parvovirus, in the composted material, as set out in Annex V, Chapter 3, Section 2 of Commission Regulation (EU) No 142/2011. The assessment of the BIOHAZ Panel exclusively focused on the ABP raw materials (catering waste and processed foodstuffs) intended for human consumption. The applicant did not provide any validation experiments with direct measurement of the reduction of viability of endogenous indicators or spiked surrogate bacteria. However, from thermal inactivation parameters reported in the literature, it can be concluded that the proposed composting standards can achieve at least a 5 log10 reduction of Enterococcus faecalis or Salmonella Senftenberg 775W. The applicant did not consider thermoresistant viruses as a relevant hazard and therefore did not provide any data from direct measurements of the reduction of infectivity of spiked thermoresistant viruses, nor provide data from validation studies undertaken at national level or data from literature supporting the efficacy of the proposed composting standards on thermoresistant viruses. However, thermoresistant viruses should be considered to be a relevant hazard in this context and validation data should have been provided accordingly. The BIOHAZ Panel considers that the evidence provided by the applicant does not demonstrate that the requirements of Annex V, Chapter 3, Section 2 of Commission Regulation (EU) No 142/2011 are achieved.
Collapse
|
9
|
Berchtikou A, Greschner AA, Tijssen P, Gauthier MA, Ozaki T. Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers. JOURNAL OF BIOPHOTONICS 2020; 13:e201900001. [PMID: 31654474 DOI: 10.1002/jbio.201900001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 05/20/2023]
Abstract
Irradiation of femtosecond (fs) pulse lasers in the visible and near-infrared ranges have been proposed as a promising approach for inactivating viruses. However, in order to achieve significant virus inactivation, past works have required relatively long irradiation times (1 hour or longer), even for small volumes. Given its advantages compared with other techniques, there is an urgent need to shorten the time required to inactivate viruses using fs laser technology. In this study, we investigate the inactivation of purified M13 bacteriophage in phosphate-buffered saline with large active volume (1 cm3 ), and short exposure time (several minutes), using lasers with 20 mJ/pulse energy at various wavelengths (800, 400 nm or both 800 and 400 nm combined). For an exposure time of 15 and 2 minute, the use of a 400 nm wavelength laser results in a high load reduction of 5.8 ± 0.3 and 2.9 ± 0.15, respectively, on the log10 scale of viability. We show that virus inactivation using the 400 nm laser is much more efficient compared with that using an 800 nm laser, or the simultaneous irradiation of 400 and 800 nm lasers. Higher pathogen inactivation is observed for lasers with shorter pulse duration, whereas at longer pulse durations, the inactivation is reduced. For millijoule-energy fs laser irradiation, the M13 bacteriophage inactivation, via the reduction of the functionality of M13 bacteriophages, is accompanied with relatively small amounts of genetic damage.
Collapse
Affiliation(s)
- Aziz Berchtikou
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| | | | - Peter Tijssen
- INRS-Centre Institut Armand-Frappier, Québec, Canada
| | - Marc A Gauthier
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| | - Tsuneyuki Ozaki
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| |
Collapse
|
10
|
Dharmasena M, Wei T, Bridges WC, Jiang X. Thermal resistance of Clostridium difficile endospores in dairy compost upon exposure to wet and dry heat treatments. J Appl Microbiol 2019; 127:274-283. [PMID: 31034124 DOI: 10.1111/jam.14295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
AIM Thermal resistance of Clostridium difficile endospores in finished dairy compost was compared at 55 and 65°C under wet and dry heat conditions. METHODS AND RESULTS A three-strain cocktail of C. difficile endospores was inoculated into dairy compost to a final concentration of c. 5·5 log CFU per gram and the moisture content (MC) of the compost was adjusted to be 20, 30 and 40%. For the dry heat treatment at 55 and 65°C, the compost samples were placed in an environmental chamber, whereas for the wet heat treatment, the inoculated compost samples were placed in a tray submerged in a water bath. The MCs of composts were maintained well throughout the wet heat treatment while the dry heat treatment reduced the MCs of composts to <10% by the end of come-up time. During the come-up time, the log endospore reductions at a selected temperature were not significantly different in compost with three selected MCs, in each heat treatment. During the holding time, endospore counts reduced by <0·5 log CFU per gram at 55 and 65°C of dry heat treatment, whereas 0·7-0·8 and 0·6-3·0 log CFU per gram reductions were observed at 55 and 65°C in wet heat treatment respectively. CONCLUSION The recommended minimum composting guidelines were not sufficient to reduce C. difficile endospore counts to an undetectable level (five endospores per gram). Increasing the temperature of thermophilic phase to 65°C, and maintaining higher MCs of composting feedstocks have significant (P < 0·05) effects on the endospore inactivation. SIGNIFICANCE AND IMPACT OF THE STUDY Our study identified factors that significantly affecting the thermal resistance of C. difficile endospores during composting, and the results suggest the current composting guidelines need to be amended in order to reduce the dissemination of C. difficile endospores in agricultural environment.
Collapse
Affiliation(s)
- M Dharmasena
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - T Wei
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - W C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - X Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
11
|
Gurtler JB, Doyle MP, Erickson MC, Jiang X, Millner P, Sharma M. Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. J Food Prot 2018; 81:1821-1837. [PMID: 30320513 DOI: 10.4315/0362-028x.jfp-18-217] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compost is organic material that has been degraded into a nutrient-stabilized humus-like substance through intense microbial activity, which can provide essential plant nutrients (nitrogen, phosphorus) to aid in the growth of fruits and vegetables. Compost can be generated from animal waste feedstocks; these can contain human pathogens, which can be inactivated through the heat and microbial competition promoted during the composting process. Outbreaks of infections caused by bacterial pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on fruit and vegetable commodities consumed raw emphasize the importance of minimizing the risk of pathogenic contamination on produce commodities. This review article investigates factors that affect the reduction and survival of bacterial foodborne pathogens during the composting process. Interactions with indigenous microorganisms, carbon:nitrogen ratios, and temperature changes influence pathogen survival, growth, and persistence in finished compost. Understanding the mechanisms of pathogen survival during the composting process and mechanisms that reduce pathogen populations can minimize the risk of pathogen contamination in the cultivation of fruits and vegetables.
Collapse
Affiliation(s)
- Joshua B Gurtler
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Michael P Doyle
- 2 Center for Food Safety, University of Georgia, 350 Woodroof Drive, Griffin, Georgia 30223
| | - Marilyn C Erickson
- 2 Center for Food Safety, University of Georgia, 350 Woodroof Drive, Griffin, Georgia 30223
| | - Xiuping Jiang
- 3 Department of Food, Nutrition and Packaging Sciences, Clemson University, 217 P & A Building, Clemson, South Carolina 29634
| | - Patricia Millner
- 4 U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Building 201, Beltsville Area Research Center-East, Beltsville, Maryland 20705, USA (ORCID: http://orcid.org/0000-0002-8585-0308 [M.S.])
| | - Manan Sharma
- 4 U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Building 201, Beltsville Area Research Center-East, Beltsville, Maryland 20705, USA (ORCID: http://orcid.org/0000-0002-8585-0308 [M.S.])
| |
Collapse
|
12
|
Chen Z, Wang H, Ionita C, Luo F, Jiang X. Effects of Chicken Litter Storage Time and Ammonia Content on Thermal Resistance of Desiccation-Adapted Salmonella spp. Appl Environ Microbiol 2015; 81:6883-9. [PMID: 26209673 PMCID: PMC4561697 DOI: 10.1128/aem.01876-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022] Open
Abstract
Broiler chicken litter was kept as a stacked heap on a poultry farm, and samples were collected up to 9 months of storage. Chicken litter inoculated with desiccation-adapted Salmonella cells was heat-treated at 75, 80, 85, and 150°C. Salmonella populations decreased in all these samples during heat treatment, and the inactivation rates became lower in chicken litter when storage time was extended from 0 to 6 months. There was no significant difference (P > 0.05) in thermal resistance of Salmonella in 6- and 9-month litter samples, indicating that a threshold for thermal resistance was reached after 6 months. Overall, the thermal resistance of Salmonella in chicken litter was affected by the storage time of the litter. The changes in some chemical, physical, and microbiological properties during storage could possibly contribute to this difference. Moisture and ammonia could be two of the most significant factors influencing the thermal resistance of Salmonella cells in chicken litter. Our results emphasize the importance of adjusting time and temperature conditions for heat processing chicken litter when it is removed from the chicken house at different time intervals.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Hongye Wang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Claudia Ionita
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
13
|
Diao J, Chen Z, Gong C, Jiang X. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions. Foodborne Pathog Dis 2015; 12:749-58. [DOI: 10.1089/fpd.2014.1912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Junshu Diao
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina
| | - Zhao Chen
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
| | - Chao Gong
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina
| |
Collapse
|
14
|
Chen Z, Wang H, Jiang X. Developing a Two-Step Heat Treatment for Inactivating Desiccation-AdaptedSalmonellaspp. in Aged Chicken Litter. Foodborne Pathog Dis 2015; 12:104-9. [DOI: 10.1089/fpd.2014.1822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zhao Chen
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
| | - Hongye Wang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina
| |
Collapse
|
15
|
Physical covering for control of Escherichia coli O157:H7 and Salmonella spp. in static and windrow composting processes. Appl Environ Microbiol 2015; 81:2063-74. [PMID: 25576620 DOI: 10.1128/aem.04002-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effect of a 30-cm covering of finished compost (FC) on survival of Escherichia coli O157:H7 and Salmonella spp. in active static and windrow composting systems. Feedstocks inoculated with E. coli O157:H7 (7.41 log CFU/g) and Salmonella (6.46 log CFU/g) were placed in biosentry tubes (7.5-cm diameter, 30-cm height) at three locations: (i and ii) two opposing sides at the interface between the FC cover layer (where present) and the feedstock material (each positioned approximately 10 cm below the pile's surface) and (iii) an internal location (top) (approximately 30 cm below the surface). On specific sampling days, surviving populations of inoculated E. coli O157:H7 and Salmonella, generic E. coli, and coliforms in compost samples were determined. Salmonella spp. were reduced significantly within 24 h in windrow piles and were below the detection limit after 3 and 7 days at internal locations of windrow and static piles containing FC covering, respectively. Likewise, E. coli O157:H7 was undetectable after 1 day in windrow piles covered with finished compost. Use of FC as a covering layer significantly increased the number of days that temperatures in the windrows remained ≥55°C at all locations and in static piles at internal locations. These time-temperature exposures resulted in rapid reduction of inoculated pathogens, and the rate of bacterial reduction was rapid in windrow piles. The sample location significantly influenced the survival of these pathogens at internal locations compared to that at interface locations of piles. Finished compost covering of compost piles aids in the reduction of pathogens during the composting process.
Collapse
|
16
|
Singh R, Jiang X. Expression of stress and virulence genes in Escherichia coli O157:H7 heat shocked in fresh dairy compost. J Food Prot 2015; 78:31-41. [PMID: 25581175 DOI: 10.4315/0362-028x.jfp-13-529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the gene expression of Escherichia coli O157:H7 heat shocked in dairy compost. A two-step real-time PCR assay was used to evaluate the expression of stress and virulence genes in E. coli O157:H7 heat shocked in compost at 47.5°C for 10 min. Heat-shocked E. coli O157:H7 in compost was isolated by using an immunomagnetic bead separation method, followed by total RNA extraction, which was then converted to cDNA by using a commercial kit. E. coli O157:H7 heat shocked in broth served as the media control. In compost, heat shock genes (clpB, dnaK, and groEL) and the alternative sigma factor (rpoH) of E. coli O157:H7 were upregulated (P < 0.05), whereas the expression of trehalose synthesis genes did not change. Virulence genes, such as stx1 and fliC, were upregulated, while genes stx2, eaeA, and hlyA were downregulated. In the toxin-antitoxin (TA) system, toxin genes, mazF, hipA, and yafQ were upregulated, whereas among antitoxin genes, only dinJ was upregulated (P < 0.05). In tryptic soy broth, all heat shock genes (rpoH, clpB, dnaK, and groEL) were upregulated (P < 0.05), and most virulence genes (stx1, stx2, hlyA, and fliC) and TA genes (mazF-mazE, hipA-hipB, and yafQ-dinJ and toxin gene chpS) were down-regulated. Our results revealed various gene expression patterns when E. coli O157:H7 inoculated in compost was exposed to a sublethal temperature. Clearly, induction of the heat shock response is one of the important protective mechanisms that prolongs the survival of pathogens during the composting process. In addition, other possible mechanisms (such as the TA system) operating along with heat shock response may be responsible for the extended survival of pathogens in compost.
Collapse
Affiliation(s)
- Randhir Singh
- Department of Biological Sciences, Nutrition and Packaging, 228A Life Science Facility, Sciences, Clemson University, South Carolina 29634, USA
| | - Xiuping Jiang
- Department of Food, Nutrition and Packaging, 228A Life Science Facility, Sciences, Clemson University, South Carolina 29634, USA.
| |
Collapse
|
17
|
Chen Z, Diao J, Dharmasena M, Ionita C, Jiang X, Rieck J. Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter. Appl Environ Microbiol 2013; 79:7013-20. [PMID: 24014540 PMCID: PMC3811545 DOI: 10.1128/aem.01969-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/01/2013] [Indexed: 11/20/2022] Open
Abstract
Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination.
Collapse
Affiliation(s)
| | - Junshu Diao
- Department of Food, Nutrition, and Packaging Sciences
| | | | | | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences
| | - James Rieck
- Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
18
|
Weil JD, Cutter CN, Beelman RB, LaBorde LF. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate. J Food Prot 2013; 76:1393-400. [PMID: 23905795 DOI: 10.4315/0362-028x.jfp-12-508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercial production of white button mushrooms (Agaricus bisporus) requires a specialized growth substrate prepared from composted agricultural by-products. Because horse and poultry manures are widely used in substrate formulations, there is a need to determine the extent to which the composting process is capable of eliminating human pathogens. In this study, partially composted substrate was inoculated with a pathogen cocktail (log 10⁶ to 10⁸ CFU/g) containing Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. Pathogen and indicator-organism reductions were followed at temperatures that typically occurred during a standard 6-day phase II pasteurization and conditioning procedure. Controlled-temperature water bath studies at 48.8, 54.4, and 60°C demonstrated complete destruction of the three pathogens after 36.0, 8.0, and 0.5 h, respectively. Destruction of L. monocytogenes and E. coli O157:H7 at 54.4°C occurred more slowly than E. coli, total coliforms, Enterobacteriaceae, and Salmonella. Microbial reductions that occurred during a standard 6-day phase II pasteurization and conditioning treatment were studied in a small-scale mushroom production research facility. After phase II composting, E. coli, coliforms, and Enterobacteriaceae were below detectable levels, and inoculated pathogens were not detected by direct plating or by enrichment. The results of this study show that a phase II composting process can be an effective control measure for eliminating risks associated with the use of composted animal manures during mushroom production. Growers are encouraged to validate and verify their own composting processes through periodic microbial testing for pathogens and to conduct studies to assure uniform distribution of substrate temperatures during phase II.
Collapse
Affiliation(s)
- Jennifer D Weil
- Department of Food Science, The Pennsylvania State University, 202 Food Science Building, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
19
|
Singh R, Jiang X. Thermal Inactivation of Acid-AdaptedEscherichia coliO157:H7 in Dairy Compost. Foodborne Pathog Dis 2012; 9:741-8. [DOI: 10.1089/fpd.2011.1110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Randhir Singh
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina
| |
Collapse
|
20
|
Singh R, Kim J, Shepherd MW, Luo F, Jiang X. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process. Appl Environ Microbiol 2011; 77:4126-35. [PMID: 21498743 PMCID: PMC3131655 DOI: 10.1128/aem.02873-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/09/2011] [Indexed: 11/20/2022] Open
Abstract
A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.
Collapse
Affiliation(s)
- Randhir Singh
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | - Jinkyung Kim
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina 29634
| | - Marion W. Shepherd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina 29634
| | - Xiuping Jiang
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|