1
|
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action. Int J Mol Sci 2025; 26:381. [PMID: 39796236 PMCID: PMC11719993 DOI: 10.3390/ijms26010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
Collapse
Affiliation(s)
| | | | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| |
Collapse
|
2
|
Dey A, Ghosh S. Investigation of the vesicle-to-micelle transition of 11-amino undecanoic acid derived sulphonamide and a comprehensive study of its interaction with protein. Int J Biol Macromol 2023; 253:127282. [PMID: 37827413 DOI: 10.1016/j.ijbiomac.2023.127282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
In the present manuscript, an amphiphile sulphonamide based surfactant benzenesulphonyl-11-amino sodium undecanoate (BASU) is designed and synthesized. The surface activity of the amphiphile in the solutions is studied at neutral pH so that the resulting amphiphile self-organizes and transfers from large unilamellar vesicles to small micelles from dilute to concentrated solutions. During the aggregate transitions, the common surfactants tend to form the small aggregate at low concentrations; but BASU shows the large vesicle structure at low concentration of ~3 mM and converts into the small micelle at ~9 mM. Therefore, different techniques have been used, such as, tensiometry, conductometry, fluorimetry and DLS and some microscopic characterization, e.g., confocal fluorescence microscopy to reveal the aggregate assembly and transition mechanism. The isothermal titration calorimetry is used for quantitative measurement of thermodynamic properties of self-assembly formation and the process is found spontaneous and entropically favorable. The permeability of the vesicle membrane bilayer is explored by a kinetic study. Effects of salt and cholesterol on the aggregate of respective amphiphile are also investigated. The interaction of surfactant with both human and bovine serum albumin is analyzed through UV-visible and fluorescence techniques to draw a comparative study. Antibacterial activity is tested by both spectral and zone inhibition methods and its application for mixed amphiphiles (e.g., BASU/CTAB) is found. Therefore, according to the ability of formation of unilamellar vesicles (ULV) and its stability, permeability and antibacterial activity, the amphiphile can have potential applications in the medicinal field.
Collapse
Affiliation(s)
- Apensu Dey
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Soumen Ghosh
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
3
|
Osaili TM, Al-Nabulsi AA, Hasan F, Dhanasekaran DK, Hussain AZS, Cheikh Ismail L, Naja F, Radwan H, Faris ME, Olaimat AN, Ayyash M, Obaid RS, Holley R. Effect of Eugenol, Vanillin, and β-Resorcylic Acid on Foodborne Pathogen Survival in Marinated Camel Meat. J Food Prot 2023; 86:100038. [PMID: 36916574 DOI: 10.1016/j.jfp.2023.100038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
The combined inhibitory effect of essential oils (EOs) with meat-based marinades has not been fully studied. Therefore, the present study aimed to gauge the effect of a yogurt-based marinade when individually combined with three EOs, namely eugenol (EU), vanillin (VA), or β-resorcylic acid (BR) on camel meat cubes inoculated with Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7 during storage. Fresh camel meat cubes of 10 g were inoculated with bacteria and dipped in the mixture of marinade and EO. Overall, the study had six EO treatments (EU 0.5%, EU 1%, VA 0.5%, VA 1%, BR 0.5%, and BR 1%) and two controls (meat without marinade and marinated meat). Treated meat cubes were stored at 4°C or 10°C for 1, 4, and 7 d. Adding only marinade to the camel meat at 10°C decreased the pathogens by 0.8-2.4 log CFU/g. At 10°C, BR decreased L. monocytogenes, E. coli O157:H7, and Salmonella spp. by 2.0, 1.5, and 1.3 log CFU/g, while EU caused a decrease (p < 0.05) of 1.9, 1.2, and 0.9 log CFU/g, respectively. Similarly, VA caused a reduction in these microorganisms of 1.3, 1.1, and 1.0 log CFU/g, respectively (p < 0.05). The combination of marinade and EO resulted in a decrease of the pathogens ranging from 0.9-1.4 and 2.8-3.7 log CFU/g at 4 and 10°C, respectively. The antimicrobial efficacy of EO alone or when combined with marinade was higher at 10°C than at 4°C with all three pathogens at both 0.5% and 1%. Overall, EOs were found to enhance the microbial safety of camel meat. In addition, they are antimicrobials that occur naturally, require a minimum investment, and may prove to be a great asset for marinated camel meat producers.
Collapse
Affiliation(s)
- Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Fayeza Hasan
- Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Dinesh K Dhanasekaran
- Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Ayman Z S Hussain
- Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture & Veterinary Medicine, United Arab Emirates University (UAEU), United Arab Emirates
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Richard Holley
- Department of Food Science and Human Nutrition, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
5
|
Hussain I, Fatima S, Siddiqui S, Ahmed S, Tabish M. Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119952. [PMID: 34052761 DOI: 10.1016/j.saa.2021.119952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
β-resorcylic acid (BR) is a phytochemical which is widely used in the food industry as a flavouring agent and preservative. It has also been found to exhibit antibacterial action against several types of food-borne bacteria. DNA is the main molecular target for many small molecules of therapeutic importance. Hence, the interest is rapidly growing among the researchers to elucidate the interaction between small molecules and DNA. Thus, paving the way to design novel DNA-specific drugs. In this study, an attempt was made to examine the mechanism of binding of BR with calf thymus DNA (ctDNA) with the help of various experiments based on spectroscopy and in silico studies. The spectroscopic studies like UV absorption and fluorescence affirmed the complex formation between BR and ctDNA. The observed binding constant was in the order of 103 M-1 which is indicative of the groove binding mechanism. These findings were further verified by dye-displacement assay, potassium iodide quenching, urea denaturation assay, the study of the effect of ssDNA, circular dichroism and DNA thermal denaturing studies. Different temperature-based fluorescence and isothermal titration calorimetry (ITC) experiments were employed to evaluate thermodynamic parameters. The analysis of thermodynamic parameters supports the enthalpically driven, exothermic and spontaneous nature of the reaction between BR and ctDNA. The forces involved in the binding process were mainly found to be hydrogen bonding, van der Waals and hydrophobic interactions. The results obtained from the molecular docking and molecular dynamics (MD) simulation were consistent with the in vitro experiments, which support the groove binding mode of BR with ctDNA.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India.
| |
Collapse
|
7
|
Meadows JA, Willsey GG, Wargo MJ. Differential requirements for processing and transport of short-chain versus long-chain O-acylcarnitines in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2018; 164:635-645. [PMID: 29517479 PMCID: PMC5982139 DOI: 10.1099/mic.0.000638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 11/18/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can metabolize carnitine and O-acylcarnitines, which are abundant in host muscle and other tissues. Acylcarnitines are metabolized to carnitine and a fatty acid. The liberated carnitine and its catabolic product, glycine betaine, can be used as osmoprotectants, to induce the secreted phospholipase C PlcH, and as sole carbon, nitrogen and energy sources. P. aeruginosa is incapable of de novo synthesis of carnitine and acylcarnitines, therefore they must be imported from an exogenous source. In this study, we present the first characterization of bacterial acylcarnitine transport. Short-chain acylcarnitines are imported by the ABC transporter CaiX-CbcWV. Medium- and long-chain acylcarnitines (MCACs and LCACs) are hydrolysed extracytoplasmically and the free carnitine is transported primarily through CaiX-CbcWV. These findings suggest that the periplasmic protein CaiX has a binding pocket that permits short acyl chains on its carnitine ligand and that there are one or more secreted hydrolases that cleave MCACs and LCACs. To identify the secreted hydrolase(s), we used a saturating genetic screen and transcriptomics followed by phenotypic analyses, but neither led to identification of a contributing hydrolase, supporting but not conclusively demonstrating redundancy for this activity.
Collapse
Affiliation(s)
- Jamie A. Meadows
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Graham G. Willsey
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
- The Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
8
|
Wagle BR, Arsi K, Upadhyay A, Shrestha S, Venkitanarayanan K, Donoghue AM, Donoghue DJ. β-Resorcylic Acid, a Phytophenolic Compound, Reduces Campylobacter jejuni in Postharvest Poultry. J Food Prot 2017; 80:1243-1251. [PMID: 28686495 DOI: 10.4315/0362-028x.jfp-16-475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human Campylobacter infections, a leading foodborne illness globally, has been linked with the high prevalence of this bacterium on raw retail chicken products. Reduction of Campylobacter counts on poultry products would greatly reduce the risk of subsequent infections in humans. To this end, this study investigated the potential of the phytophenolic compound β-resorcylic acid (BR) to reduce Campylobacter counts on postharvest poultry (chicken skin or meat). Four trials in total, two each on thigh skin or breast meat, were conducted in which chicken skin or meat samples (2 ± 0.1 g; 10 samples per treatment) were inoculated with 50 μL (∼106 CFU per sample) of a cocktail of four wild strains of C. jejuni. After 30 min of attachment, inoculated samples were dipped in a 0, 0.5, 1, or 2% BR solution for 30 s immediately followed by vigorously vortexing the samples in Butterfield's phosphate diluent and plating the supernatant for Campylobacter enumeration. In addition, the effect of BR on the color of skin and meat samples was studied. Moreover, the change in the expression of survival and virulence genes of C. jejuni exposed to BR was evaluated. Data were analyzed by the PROC MIXED procedure of SAS (P < 0.05; SAS Institute Inc., Cary, NC). All BR treatments significantly reduced Campylobacter populations on both chicken or meat samples by 1 to 3 log CFU/g compared with non-BR-treated washed controls. No significant difference in the lightness, redness, and yellowness of skin and meat samples was observed on exposure to BR wash (P > 0.05). Real-time PCR results revealed that BR treatment down-regulated expression of select genes coding for motility (motA, motB) and attachment (cadF, ciaB) in the majority of C. jejuni strains. Stress response genes (sodB, katA) were upregulated in C. jejuni S-8 (P < 0.05). Overall, our results suggest that BR could be effectively used as antimicrobial dip treatment during poultry processing for reducing Campylobacter on chicken carcasses.
Collapse
Affiliation(s)
- B R Wagle
- 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - K Arsi
- 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - A Upadhyay
- 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - S Shrestha
- 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - K Venkitanarayanan
- 2 Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269; and
| | - A M Donoghue
- 3 U.S. Department of Agriculture, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Fayetteville, Arkansas 72701, USA
| | - D J Donoghue
- 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|