1
|
Yoon JH, Kim D, Joung H, Lee SY. The habituation to different concentrations of salt may variably influence the ability of Cronobacter sakazakii, Salmonella enterica serovar Enteritidis, Bacillus cereus, and Staphylococcus aureus to resist acid, bile salt, and heat stresses. Food Microbiol 2025; 128:104723. [PMID: 39952747 DOI: 10.1016/j.fm.2025.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
This study was to examine the relationship between preexposure to salt and stress-responsive resistance to acid, bile salt, and heat in Cronobacter sakazakii, Salmonella enterica serovar Enteritidis, Bacillus cereus, and Staphylococcus aureus. Stationary phase-grown cultures of C. sakazakii, S. Enteritidis, B. cereus or St. aureus were subjected to elevated concentrations of salt (maximally 14.0%), and the cells of each bacterium were allowed to grow at 37 °C for consecutive 6 d. The 6-d habituated cells were then subjected to acid (pH 2.0), 10% bile salt, and heat (60 °C) stresses. C. sakazakii, S. Enteritidis, and St. aureus were more sensitive to acid after the habituation process than their stationary phase-grown counterparts. Although the 0.5% salt-habituated cells of B. cereus better survived at a subsequent acid challenge than did the nonhabituated cells of this bacterium, there were no significant (p< 0.05) differences in the Gompertz-derived growth kinetics between salt-habituated and nonhabituated cultures. Similarly, C. sakazakii and S. Enteritidis cells preexposed to salt was far more heat-sensitive, whereas the preexposure of B. cereus and St. aureus to 0.5 and 8.0% salt, respectively, resulted in their increased survival against heat as compared with their nonhabituated control. Nevertheless, the resultant growth parameters revealed that salt has no clear inducive effect on the acquisition of resistance responses to heterogeneous stresses. Overall, the habituation to different concentrations of salt may variably influence the ability of C. sakazakii, S. Enteritidis, B. cereus, and St. aureus to resist acid, bile salt, and heat stresses.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Danbi Kim
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Hyunwoo Joung
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Gu J, Dong X, Zhou Y, Zhao Y, Du Q, Chen J, Mao X, Wang F, Tu B. Analysis of Halophilic Phenotypic Variation and Cytotoxicity of Vibrio parahaemolyticus from Different Sources. Pathogens 2025; 14:182. [PMID: 40005557 PMCID: PMC11857879 DOI: 10.3390/pathogens14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Vibrio parahaemolyticus is an aquatic animal pathogen. Recently, the detection rate of V. parahaemolyticus in freshwater products has exceeded that in seafood products, and the strains isolated from freshwater products exhibit better growth conditions in low-salinity environments. This study is based on a food risk detection activity in Changzhou, Jiangsu Province, China, investigating the variation of halophilism and the virulence of two groups of strains under different salt concentrations. Under 0%, 0.5%, and 1% salt, the strains from the freshwater showed faster growth than those from the seawater. In comparison, the strains from the seawater group under 2% and 3% salt grew faster than the growing status under the foregoing low-salt concentration environment. The cytotoxicity produced by the two strains was approximately 1.4 times higher in the 0.5% and 1% salt concentration groups compared to the 3% corresponding experimental group. Under the 0%, 0.5%, and 1% salt, the cytotoxicity of strains in the freshwater group increased by nearly 20% compared to that in the seawater groups. The freshwater strains showed altered halophilism and adapted to the low-salt environment. This research will be helpful in establishing a local and global control strategy against the diseases resulting from V. parahaemolyticus.
Collapse
Affiliation(s)
- Jingyue Gu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China;
| | - Xin Dong
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Yunqian Zhou
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Ying Zhao
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Qiang Du
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Jia Chen
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Xujian Mao
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Fengming Wang
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
| | - Bowen Tu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China;
- Changzhou Centre for Disease Control and Prevention, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; (X.D.); (Y.Z.); (Q.D.); (J.C.); (X.M.); (F.W.)
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
3
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
4
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
5
|
Liu Z, Zhou Y, Wang H, Liu C, Wang L. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus. Int J Food Microbiol 2024; 417:110691. [PMID: 38631283 DOI: 10.1016/j.ijfoodmicro.2024.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Yi Zhou
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Chengchu Liu
- University of Maryland Sea Grant Extension Program, UMES Center for Food Science and Technology, Princess Anne, MD, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
6
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
7
|
Lu H, Sun Y, Wang X, Lu Z, Zhu J. Transcriptomics reveal the antibiofilm mechanism of NaCl combined with citral against Vibrio parahaemolyticus. Appl Microbiol Biotechnol 2022; 107:313-326. [DOI: 10.1007/s00253-022-12286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
|
8
|
Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R. Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119937. [PMID: 35977641 DOI: 10.1016/j.envpol.2022.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Coastal waters are confluences receiving large amounts of point and non-point sources of pollution. An attempt was made to explore microbial community interactions in response to carbon, nitrogen and metal pollution. Additionally, experiments were designed to analyze the influence of these factors on horizontal gene transfer (HGT). Shift in bacterial diversity dynamics by arsenic stress and nutrient addition in coastal waters was explored by metagenomics of microcosm setups. Phylogenetic analysis revealed equal distribution of Gammaproteobacteria (29%) and Betaproteobacteria (28%) in control microcosm. This proportional diversity from control switched to unique distribution of Gammaproteobacteria (44.5%)> Flavobacteria (17.7%)> Bacteriodia (11.92%)> Betaproteobacteria (11.52%) in microcosm supplemented with carbon, nitrogen and metal (C + N + M). Among metal-stressed systems, alpha diversity analysis indicated highest diversity of genera in C + N + M followed by N + M > C+M> metal alone. Arsenic and ampicillin sensitive E. coli XL1 blue and environmental strains (Vibrio tubiashii W85 and E. coli W101) were tested for efficiency of uptake of plasmid (P) pUCminusMCS (arsBRampR) under varying stress conditions. Transformation experiments revealed that combined effect of carbon, nitrogen and metal on horizontal gene transfer (HGT) was significantly higher (p < 0.01) than individual factors. The effect of carbon on HGT was proved to be superior to nitrogen under metal stressed conditions. Presence of arsenic in experimental setups (P + M, P + N + M and P + C + M) enhanced the HGT compared to non-metal counterparts supplemented with carbon or nitrogen. Arsenic resistant bacterial isolates (n = 200) were tested for the ability to utilize various carbon and nitrogen substrates and distinct positive correlation (p < 0.001) was found between arsenic resistance and utilization of urea and nitrate. However, evident positive correlation was not found between carbon sources and arsenic resistance. Our findings suggest that carbon and nitrogen pollution in aquatic habitats under arsenic stress determine the microbial community dynamics and critically influence uptake of genetic material from the surrounding environment.
Collapse
Affiliation(s)
- C S Neethu
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - C Saravanakumar
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India.
| |
Collapse
|
9
|
Barcenilla C, Álvarez-Ordóñez A, López M, Alvseike O, Prieto M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products-A Review. Foods 2022; 11:2331. [PMID: 35954097 PMCID: PMC9367943 DOI: 10.3390/foods11152331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Salt is widely employed in different foods, especially in meat products, due to its very diverse and extended functionality. However, the high intake of sodium chloride in human diet has been under consideration for the last years, because it is related to serious health problems. The meat-processing industry and research institutions are evaluating different strategies to overcome the elevated salt concentrations in products without a quality reduction. Several properties could be directly or indirectly affected by a sodium chloride decrease. Among them, microbial stability could be shifted towards pathogen growth, posing a serious public health threat. Nonetheless, the majority of the literature available focuses attention on the sensorial and technological challenges that salt reduction implies. Thereafter, the need to discuss the consequences for shelf-life and microbial safety should be considered. Hence, this review aims to merge all the available knowledge regarding salt reduction in meat products, providing an assessment on how to obtain low salt products that are sensorily accepted by the consumer, technologically feasible from the perspective of the industry, and, in particular, safe with respect to microbial stability.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| | - Ole Alvseike
- Animalia—Norwegian Meat and Poultry Research Centre, NO-0513 Oslo, Norway
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24007 León, Spain
| |
Collapse
|
10
|
Campbell VM, Chouljenko A, Hall SG. Depuration of live oysters to reduce Vibrio parahaemolyticus and Vibrio vulnificus: A review of ecology and processing parameters. Compr Rev Food Sci Food Saf 2022; 21:3480-3506. [PMID: 35638353 DOI: 10.1111/1541-4337.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.
Collapse
Affiliation(s)
- Vashti M Campbell
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexander Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Steven G Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Stevens EL, Carleton HA, Beal J, Tillman GE, Lindsey RL, Lauer AC, Pightling A, Jarvis KG, Ottesen A, Ramachandran P, Hintz L, Katz LS, Folster JP, Whichard JM, Trees E, Timme RE, McDERMOTT P, Wolpert B, Bazaco M, Zhao S, Lindley S, Bruce BB, Griffin PM, Brown E, Allard M, Tallent S, Irvin K, Hoffmann M, Wise M, Tauxe R, Gerner-Smidt P, Simmons M, Kissler B, Defibaugh-Chavez S, Klimke W, Agarwala R, Lindsay J, Cook K, Austerman SR, Goldman D, McGARRY S, Hale KR, Dessai U, Musser SM, Braden C. Use of Whole Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J Food Prot 2022; 85:755-772. [PMID: 35259246 DOI: 10.4315/jfp-21-437] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Eric L Stevens
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Heather A Carleton
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jennifer Beal
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Glenn E Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Rebecca L Lindsey
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - A C Lauer
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Arthur Pightling
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Karen G Jarvis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Andrea Ottesen
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Padmini Ramachandran
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Leslie Hintz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Lee S Katz
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jason P Folster
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jean M Whichard
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eija Trees
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Ruth E Timme
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Patrick McDERMOTT
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Beverly Wolpert
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Michael Bazaco
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Sabina Lindley
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Beau B Bruce
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Patricia M Griffin
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eric Brown
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Marc Allard
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Sandra Tallent
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Kari Irvin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Maria Hoffmann
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Matt Wise
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Robert Tauxe
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Mustafa Simmons
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Bonnie Kissler
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | | | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richa Agarwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - James Lindsay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Kimberly Cook
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Suelee Robbe Austerman
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, Iowa 50010, USA
| | - David Goldman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Sherri McGARRY
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Kis Robertson Hale
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Steven M Musser
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Chris Braden
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| |
Collapse
|
12
|
Effects of NaCl Concentration on the Behavior of Vibrio brasiliensis and Transcriptome Analysis. Foods 2022; 11:foods11060840. [PMID: 35327263 PMCID: PMC8955013 DOI: 10.3390/foods11060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of Vibrio bacteria is affected by environmental conditions, and unfavorable conditions will produce different degrees of stress on Vibrio. The cells respond to the stress on the bacteria through changes in biological characteristics and transcriptomes. To study the effect of NaCl concentration on Vibrio brasiliensis, we have determined the biological characteristics of the 0%, 1%, 2%, 3%, 5%, and 7% NaCl concentrations cultured V. brasiliensis to research the salt stress to bacteria. We found that the biological properties of V. brasiliensis cultured with different NaCl concentrations were different, and the expression of outer membrane proteins of V. brasiliensis changed when it was grown under different NaCl concentrations. When bacteria cultured in higher NaCl concentrations (3%, 5% and 7% NaCl), the sodium-type flagellar protein MotY was found. Finally, the transcriptome analysis of V. brasiliensis cultured with 0% NaCl and 7% NaCl was carried out to find out the differentially expressed genes. We found that the same gene have opposite up-regulated and down-regulated expression in two treatments, indicating that these types of genes are regulated different in low and high osmotic stress.
Collapse
|
13
|
Sami Z, Kaouthar M, Nadia C, Hedi BM. Effect of sunlight and salinity on the survival of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in water microcosms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10689. [PMID: 35112431 DOI: 10.1002/wer.10689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The effect of sunlight and salinities (10, 20, 39, and 60 psu) on the survival of Vibrio parahaemolyticus strains carrying either (thermostable direct hemolysin) tdh, the (thermostable related hemolysin) trh, and both or none of them were studied in water microcosms stabilized at 20°C using plate count agar and acridine orange direct viable count. All V. parahaemolyticus strains exposed to sunlight rapidly lose their culturability and evolve into a viable but non-culturable state (VBNC). However, the tdh positive strains remain more culturable than the non-virulent or trh positive strain but statically insignificant. At tested salinities, the survival time was higher at 10, 20, and 60 psu compared with that observed in seawater (39 psu). In seawater under dark condition, Vibrio strains remain culturable for up to 200 days with a significant difference between strains (p < 0.05). Furthermore, the non-pathogenic strain survives longer than the virulent ones. At different salinities, a better adaptation is observed at 10 and 20 psu compared with 39 and 60 psu. Resuscitations essays performed on VBNC bacteria in a nutrient broth at 20°C and 37°C does not show any revivification. PRACTITIONER POINTS: Effect of sunlight and salinities on the survival of V. parahaemolyticus in the marine environment. Resuscitation essay performed on viable but no cultivable bacteria. Microscope motility examines show that all strains exposed to sunlight remain motile after the loss of cultivability.
Collapse
Affiliation(s)
- Zaafrane Sami
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Maatouk Kaouthar
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Cherif Nadia
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Ben Mansour Hedi
- Unité de Recherche Analyses et Procédés Appliqués à l'Environnement-ISSAT, Mahdia, Tunisia
| |
Collapse
|
14
|
Li X, Sun J, Zhang M, Xue X, Wu Q, Yang W, Yin Z, Zhou D, Lu R, Zhang Y. The Effect of Salinity on Biofilm Formation and c-di-GMP Production in Vibrio parahaemolyticus. Curr Microbiol 2021; 79:25. [PMID: 34905101 DOI: 10.1007/s00284-021-02723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Vibrio parahaemolyticus is a moderately halophilic, salt-requiring organism that exhibits optimal growth at approximately 3% salt. Thus, salinity stress is one of the most important stimuli during its lifecycle. The bacterium possesses a strong ability to form biofilms on surfaces, which are thought to be involved in protecting it from adverse environmental conditions. In the present study, salinity-dependent biofilm formation by V. parahaemolyticus was investigated by combining crystal violet staining, colony morphology, intracellular c-di-GMP quantification and quantitative PCR. The results showed that biofilm formation by V. parahaemolyticus was significantly enhanced in low salinity growth conditions and was affected by incubation time. In addition, low salinity reduced intracellular c-di-GMP degradation in V. parahaemolyticus. Transcription of genes encoding ScrABC and ScrG proteins, which are involved in intracellular c-di-GMP metabolism, was inhibited by low salinity growth conditions. Thus, reduced intracellular c-di-GMP degradation in V. parahaemolyticus in low salinity growth conditions may be mediated by repression of scrG and scrABC transcription. Taken together, these results demonstrated for the first time that salinity regulates biofilm formation and c-di-GMP production in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Junfang Sun
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China. .,School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
15
|
Almejhim M, Aljeldah M, Elhadi N. Improved isolation and detection of toxigenic Vibrio parahaemolyticus from coastal water in Saudi Arabia using immunomagnetic enrichment. PeerJ 2021; 9:e12402. [PMID: 34760388 PMCID: PMC8559605 DOI: 10.7717/peerj.12402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Vibrio parahaemolyticus is recognized globally as a cause of foodborne gastroenteritis and its widely disseminated in marine and coastal environment throughout the world. The main aim of this study was conducted to investigate the presence of toxigenic V. parahaemolyticus in costal water in the Eastern Province of Saudi Arabia by using immunomagnetic separation (IMS) in combination with chromogenic Vibrio agar medium and PCR targeting toxR gene of species level and virulence genes. Methods A total of 192 seawater samples were collected from five locations and enriched in alkaline peptone water (APW) broth. One-milliliter portion from enriched samples in APW were mixed with an immunomagnetic beads (IMB) coated with specific antibodies against V. parahaemolyticus polyvalent K antisera and separated beads with captured bacteria streaked on thiosulfate citrate bile salts sucrose (TCBS) agar and CHROMagar Vibrio (CaV) medium. Results Of the 192 examined seawater samples, 38 (19.8%) and 44 (22.9%) were positive for V. parahaemolyticus, producing green and mauve colonies on TCBS agar and CaV medium, respectively. Among 120 isolates of V. parahaemolyticus isolated in this study, 3 (2.5%) and 26 (21.7%) isolates of V. parahaemolyticus isolated without and with IMB treatment tested positive for the toxin regulatory (toxR) gene, respectively. Screening of the confirmed toxR gene-positive isolates revealed that 21 (17.5%) and 3 (2.5%) were positive for the thermostable direct hemolysin (tdh) encoding gene in strains isolated with IMB and without IMB treatment, respectively. None of the V. parahaemolyticus strains tested positive for the thermostable related hemolysin (trh) gene. In this study, we found that the CaV medium has no advantage over TCBS agar if IMB concentration treatment is used during secondary enrichment steps of environmental samples. The enterobacterial repetitive intergenic consensus (ERIC)-PCR DNA fingerprinting analysis revealed high genomic diversity, and 18 strains of V. parahaemolyticus were grouped and identified into four identical ERIC clonal group patterns. Conclusions The presented study reports the first detection of tdh producing V. parahaemolyticus in coastal water in the Eastern Province of Saudi Arabia.
Collapse
Affiliation(s)
- Mariam Almejhim
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
16
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
17
|
Gu D, Wang K, Lu T, Li L, Jiao X. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. JOURNAL OF FISH DISEASES 2021; 44:1155-1168. [PMID: 33831221 PMCID: PMC8359830 DOI: 10.1111/jfd.13376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 05/15/2023]
Abstract
Pathogens adapted to sub-lethal acidic conditions could increase the virulence and survival ability under lethal conditions. In the aquaculture industry, feed acidifiers have been used to increase the growth of aquatic animals. However, there is limited study on the effects of acidic condition on the virulence and survival of pathogens in aquaculture. In this study, we investigated the survival ability of Vibrio parahaemolyticus at lethal acidic pH (4.0) after adapted the bacteria to sub-lethal acidic pH (5.5) for 1 hr. Our results indicated that the adapted strain increased the survival ability at lethal acidic pH invoked by an inorganic (HCl) or organic (citric) acid. RNA-sequencing (RNA-seq) results revealed that 321 genes were differentially expressed at the sub-lethal acidic pH including cadC, cadBA and groES/groEL relating to acid tolerance response (ATR), as well as genes relating to outer membrane, heat-shock proteins, phosphotransferase system and flagella system. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that cadC and cadBA were upregulated under sub-lethal acidic conditions. The CadC protein could directly regulate the expression of cadBA to modulate the ATR in V. parahaemolyticus. RNA-seq data also indicated that 113 genes in the CadC-dependent way and 208 genes in the CadC-independent way were differentially expressed, which were related to the regulation of ATR. Finally, the motility and cytotoxicity of the sub-lethal acidic adapted wild type (WT) were significantly increased compared with the unadapted strain. Our results demonstrated that the dietary acidifiers may increase the virulence and survival of V. parahaemolyticus in aquaculture.
Collapse
Affiliation(s)
- Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| | - Kangru Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Tianyu Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| |
Collapse
|
18
|
The organosulfur compound dimethylsulfoniopropionate (DMSP) is utilized as an osmoprotectant by Vibrio species. Appl Environ Microbiol 2021; 87:AEM.02235-20. [PMID: 33355097 PMCID: PMC8090876 DOI: 10.1128/aem.02235-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus, contains at least six osmolyte transporters, four betaine carnitine choline transport (BCCT) carriers BccT1-BccT4 and two ABC-family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and several other Vibrio species including V. cholerae and V. vulnificus Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to wild type in high salinity media supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT-family transporters, BccT1 and BccT2, which are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3 and functional complementation in Escherichia coli MKH13 showed V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5 that was also a carrier for DMSP.Importance DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae are marine species, many of which are halophiles exemplified by V. parahaemolyticus, a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant, which may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus and Vibrio species form part of the microbial communities associated with them. The function of DMSP in these interactions is unclear, but could be an important driver for these associations allowing Vibrio proliferation. This work suggests that DMSP likely has an important role in heterotrophic bacteria ecology than previously appreciated.
Collapse
|
19
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
20
|
Spaur M, Davis BJK, Kivitz S, DePaola A, Bowers JC, Curriero FC, Nachman KE. A systematic review of post-harvest interventions for Vibrio parahaemolyticus in raw oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140795. [PMID: 32731065 DOI: 10.1016/j.scitotenv.2020.140795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-cholera Vibrio bacteria are a major cause of foodborne illness in the United States. Raw oysters are commonly implicated in gastroenteritis caused by pathogenic Vibrio parahaemolyticus. In response to outbreaks in 1997-1998, the US Food and Drug Administration developed a nation-wide quantitative microbial risk assessment (QMRA) of V. parahaemolyticus in raw oysters in 2005. The QMRA identified information gaps that new research may address. Incidence of sporadic V. parahaemolyticus illness has recently increased and, as oyster consumption increases and sea temperatures rise, V. parahaemolyticus outbreaks may become more frequent, posing health concerns. Updated and region-specific QMRAs will improve the accuracy and precision of risk of infection estimates. OBJECTIVES We identify research to support an updated QMRA of V. parahaemolyticus from oysters harvested in Chesapeake Bay and Puget Sound, focusing on observational and experimental research on post-harvest practices (PHPs) published from 2004 to 2019. METHODS A predefined search strategy was applied to PubMed, Embase, Scopus, Science.gov, NAL Agricola, and Google Scholar. Study eligibility criteria were defined using a population, intervention, comparator, and outcome statement. Reviewers independently coded abstracts for inclusion/exclusion using predefined criteria. Data were extracted and study quality and relevance evaluated based on published guidance for food safety risk assessments. Findings were synthesized using a weight of evidence approach. RESULTS Of 12,174 articles retrieved, 93 were included for full-text review. Twenty-seven studies were found to be high quality and high relevance, including studies on cold storage, high hydrostatic pressure, depuration, and disinfectant, and other PHPs. High hydrostatic pressure consistently emerged as the most effective PHP in reducing abundance of V. parahaemolyticus. DISCUSSION Limitations of the knowledge base and review approach involve the type and quantity of data reported. Future research should focus on PHPs for which few or no high quality and high relevance studies exist, such as irradiation and relaying.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Benjamin J K Davis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Spatial Science for Public Health Center, Johns Hopkins University, Baltimore, MD, United States of America; Health Sciences Center for Chemical Regulation and Food Safety, Exponent, Inc., Washington, DC, United States of America
| | - Scott Kivitz
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Angelo DePaola
- Angelo DePaola Consulting, Coden, AL, United States of America
| | - John C Bowers
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Frank C Curriero
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Spatial Science for Public Health Center, Johns Hopkins University, Baltimore, MD, United States of America
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America; Johns Hopkins Risk Sciences and Public Policy Institute, Baltimore, MD, United States of America; Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
21
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Moon HJ, Lee JY, Lim JY, Kim SJ, Song KY, Yoon KS. The fate of cold‐stressed or
tetracycline‐resistant
Vibrio
spp. in precooked shrimp during frozen storage. J Food Saf 2020. [DOI: 10.1111/jfs.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hye J. Moon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Jeong Y. Lee
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ju Y. Lim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Su J. Kim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki Y. Song
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki S. Yoon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
23
|
Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi J Biol Sci 2020; 27:1602-1608. [PMID: 32489301 PMCID: PMC7253911 DOI: 10.1016/j.sjbs.2020.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne bacterial pathogen that may cause gastroenteritis in humans through the consumption of seafood contaminated with this microorganism. The emergence of antimicrobial and multidrug-resistant bacteria is another serious public health threat worldwide. In this study, the prevalence and antibiotic susceptibility test of V. parahaemolyticus in blood clams, shrimps, surf clams, and squids were determined. The overall prevalence of V. parahaemolyticus in seafood was 85.71% (120/140), consisting of 91.43% (32/35) in blood clam, 88.57% (31/35) in shrimps, 82.86% (29/35) in surf clams, and 80% (28/35) in squids. The majority of V. parahaemolyticus isolates from the seafood samples were found to be susceptible to most antibiotics except ampicillin, cefazolin, and penicillin. The MAR indices of V. parahaemolyticus isolates ranged from 0.04 to 0.71 and about 90.83% of isolates were found resistant to more than one antibiotic. The high prevalence of V. parahaemolyticus in seafood and multidrug-resistant isolates detected in this study could pose a potential risk to human health and hence appropriate control methods should be in place to minimize the potential contamination and prevent the emergence of antibiotic resistance.
Collapse
|
24
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Quorum Sensing Regulators AphA and OpaR Control Expression of the Operon Responsible for Biosynthesis of the Compatible Solute Ectoine. Appl Environ Microbiol 2019; 85:AEM.01543-19. [PMID: 31519665 DOI: 10.1128/aem.01543-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus, a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae, was found to repress ect expression in V. parahaemolyticus In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR, while AphA is an indirect activator of cosR Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness.IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR, which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species.
Collapse
|
26
|
Mizan MFR, Ashrafudoulla M, Sadekuzzaman M, Kang I, Ha SD. Effects of NaCl, glucose, and their combinations on biofilm formation on black tiger shrimp (Penaeus monodon) surfaces by Vibrio parahaemolyticus. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Nordin N, Yusof NA, Radu S, Hushiarian R. Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen. J Vis Exp 2018. [PMID: 29912194 DOI: 10.3791/56585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm2). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
Collapse
Affiliation(s)
- Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia;
| | - Nor Azah Yusof
- Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia
| | - Son Radu
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia
| | | |
Collapse
|
28
|
Quorum Sensing Regulators Are Required for Metabolic Fitness in Vibrio parahaemolyticus. Infect Immun 2017; 85:IAI.00930-16. [PMID: 28069817 DOI: 10.1128/iai.00930-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) is a process by which bacteria alter gene expression in response to cell density changes. In Vibrio species, at low cell density, the sigma 54-dependent response regulator LuxO is active and regulates the two QS master regulators AphA, which is induced, and OpaR, which is repressed. At high cell density the opposite occurs: LuxO is inactive, and therefore OpaR is induced while AphA is repressed. In Vibrio parahaemolyticus, a significant enteric pathogen of humans, the roles of these regulators in pathogenesis are less known. We examined deletion mutants of luxO, opaR, and aphA for in vivo fitness using an adult mouse model. We found that the luxO and aphA mutants were defective in colonization compared to levels in the wild type. The opaR mutant did not show any defect in vivo Colonization was restored to wild-type levels in a luxO opaR double mutant and was also increased in an opaR aphA double mutant. These data suggest that AphA is important and that overexpression of opaR is detrimental to in vivo fitness. Transcriptome sequencing (RNA-Seq) analysis of the wild type and luxO mutant grown in mouse intestinal mucus showed that 60% of the genes that were downregulated in the luxO mutant were involved in amino acid and sugar transport and metabolism. These data suggest that the luxO mutant has a metabolic disadvantage, which was confirmed by growth pattern analysis using phenotype microarrays. Bioinformatics analysis revealed OpaR binding sites in the regulatory region of 55 carbon transporter and metabolism genes. Biochemical analysis of five representatives of these regulatory regions demonstrated direct binding of OpaR in all five tested. These data demonstrate the role of OpaR in carbon utilization and metabolic fitness, an overlooked role in the QS regulon.
Collapse
|
29
|
Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol 2015; 49:41-55. [DOI: 10.1016/j.fm.2015.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
|
30
|
López-Hernández KM, Pardío-Sedas VT, Lizárraga-Partida L, Williams JDJ, Martínez-Herrera D, Flores-Primo A, Uscanga-Serrano R, Rendón-Castro K. Environmental parameters influence on the dynamics of total and pathogenic Vibrio parahaemolyticus densities in Crassostrea virginica harvested from Mexico's Gulf coast. MARINE POLLUTION BULLETIN 2015; 91:317-329. [PMID: 25510545 DOI: 10.1016/j.marpolbul.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/01/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
The influence of environmental parameters on the total and pathogenic Vibrio parahaemolyticus seasonal densities in American oysters (Crassostrea virginica) was evaluated for 1 year. Harvesting site A yielded the highest mean densities of V. parahaemolyticus tlh+, tdh+/trh-, tdh-/trh+ and tdh+/trh+ during spring season at 2.57, 1.74, 0.36, and -0.40 log10 MPN/g, respectively, and tdh+/orf8+ during winter season (0.90 log10 MPN/g). V. parahaemolyticus tlh+ densities were associated to salinity (R(2)=0.372, P<0.022), tdh+/trh+ to turbidity (R(2)=0.597, P<0.035), and orf8+ to temperature, salinity, and pH (R(2)=0.964, P<0.001). The exposure to salinity and temperature conditions during winter and spring seasons regulated the dynamics of V. parahaemolyticus harboring potentially pathogenic genotypes within the oyster. The adaptive response of V. parahaemolyticus to seasonal environmental changes may lead to an increase in survival and virulence, threatening the seafood safety and increasing the risk of illness.
Collapse
Affiliation(s)
- Karla M López-Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico
| | - Violeta T Pardío-Sedas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico.
| | - Leonardo Lizárraga-Partida
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California CP 22860, Mexico
| | - José de J Williams
- Dirección General de Desarrollo Académico, Edificio Central-Rectoría, Universidad Autónoma de Yucatán, Mérida, Yucatán CP 97000, Mexico
| | - David Martínez-Herrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico
| | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico
| | - Roxana Uscanga-Serrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico
| | - Karla Rendón-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yañez, Col. Unidad Veracruzana, Veracruz CP 91710, Mexico
| |
Collapse
|
31
|
Insights into Vibrio parahaemolyticus CHN25 response to artificial gastric fluid stress by transcriptomic analysis. Int J Mol Sci 2014; 15:22539-62. [PMID: 25490137 PMCID: PMC4284723 DOI: 10.3390/ijms151222539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is the causative agent of food-borne gastroenteritis disease. Once consumed, human acid gastric fluid is perhaps one of the most important environmental stresses imposed on the bacterium. Herein, for the first time, we investigated Vibrio parahaemolyticus CHN25 response to artificial gastric fluid (AGF) stress by transcriptomic analysis. The bacterium at logarithmic growth phase (LGP) displayed lower survival rates than that at stationary growth phase (SGP) under a sub-lethal acid condition (pH 4.9). Transcriptome data revealed that 11.6% of the expressed genes in Vibrio parahaemolyticus CHN25 was up-regulated in LGP cells after exposed to AGF (pH 4.9) for 30 min, including those involved in sugar transport, nitrogen metabolism, energy production and protein biosynthesis, whereas 14.0% of the genes was down-regulated, such as ATP-binding cassette (ABC) transporter and flagellar biosynthesis genes. In contrast, the AGF stress only elicited 3.4% of the genes from SGP cells, the majority of which were attenuated in expression. Moreover, the number of expressed regulator genes was also substantially reduced in SGP cells. Comparison of transcriptome profiles further revealed forty-one growth-phase independent genes in the AGF stress, however, half of which displayed distinct expression features between the two growth phases. Vibrio parahaemolyticus seemed to have evolved a number of molecular strategies for coping with the acid stress. The data here will facilitate future studies for environmental stresses and pathogenicity of the leading seafood-borne pathogen worldwide.
Collapse
|
32
|
Deciphering the role of multiple betaine-carnitine-choline transporters in the Halophile Vibrio parahaemolyticus. Appl Environ Microbiol 2014; 81:351-63. [PMID: 25344241 DOI: 10.1128/aem.02402-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vibrio parahaemolyticus is a halophile that is the predominant cause of bacterial seafood-related gastroenteritis worldwide. To survive in the marine environment, V. parahaemolyticus must have adaptive strategies to cope with salinity changes. Six putative compatible solute (CS) transport systems were previously predicted from the genome sequence of V. parahaemolyticus RIMD2210633. In this study, we determined the role of the four putative betaine-carnitine-choline transporter (BCCT) homologues VP1456, VP1723, VP1905, and VPA0356 in the NaCl stress response. Expression analysis of the four BCCTs subjected to NaCl upshock showed that VP1456, VP1905, and VPA0356, but not VP1723, were induced. We constructed in-frame single-deletion mutant strains for all four BCCTs, all of which behaved similarly to the wild-type strain, demonstrating a redundancy of the systems. Growth analysis of a quadruple mutant and four BCCT triple mutants demonstrated the requirement for at least one BCCT for efficient CS uptake. We complemented Escherichia coli MHK13, a CS synthesis- and transporter-negative strain, with each BCCT and examined CS uptake by growth analysis and (1)H nuclear magnetic resonance (NMR) spectroscopy analyses. These data demonstrated that VP1456 had the most diverse substrate transport ability, taking up glycine betaine (GB), proline, choline, and ectoine. VP1456 was the sole ectoine transporter. In addition, the data demonstrated that VP1723 can transport GB, proline, and choline, whereas VP1905 and VPA0356 transported only GB. Overall, the data showed that the BCCTs are functional and that there is redundancy among them.
Collapse
|
33
|
Alternative sigma factor RpoE is important for Vibrio parahaemolyticus cell envelope stress response and intestinal colonization. Infect Immun 2014; 82:3667-77. [PMID: 24935982 DOI: 10.1128/iai.01854-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio parahaemolyticus is a halophile that inhabits brackish waters and a wide range of hosts, including crustaceans, fish, mollusks, and humans. In humans, it is the leading cause of bacterial seafood-borne gastroenteritis. The focus of this work was to determine the role of alternative sigma factors in the stress response of V. parahaemolyticus RIMD2210633, an O3:K6 pandemic isolate. Bioinformatics identified five putative extracytoplasmic function (ECF) family of alternative sigma factors: VP0055, VP2210, VP2358, VP2578, and VPA1690. ECF factors typically respond to cell wall/cell envelope stress, iron levels, and the oxidation state of the cell. We have demonstrated here that one such sigma factor, VP2578, a homologue of RpoE from Escherichia coli, is important for survival under a number of cell envelope stress conditions and in gastrointestinal colonization of a streptomycin-treated adult mouse. In this study, we determined that an rpoE deletion mutant strain BHM2578 compared to the wild type (WT) was significantly more sensitive to polymyxin B, ethanol, and high-temperature stresses. We demonstrated that in in vivo competition assays between the rpoE mutant and the WT marked with the β-galactosidase gene lacZ (WBWlacZ), the mutant strain was defective in colonization compared to the WT. In contrast, deletion of the rpoS stress response regulator did not affect in vivo survival. In addition, we examined the role of the outer membrane protein, OmpU, which in V. cholerae is proposed to be the sole activator of RpoE. We found that an ompU deletion mutant was sensitive to bile salt stress but resistant to polymyxin B stress, indicating OmpU is not essential for the cell envelope stress responses or RpoE function. Overall, these data demonstrate that RpoE is a key cell envelope stress response regulator and, similar to E. coli, RpoE may have several factors that stimulate its function.
Collapse
|
34
|
Chowdhury N, Kingston JJ, Whitaker WB, Carpenter MR, Cohen A, Boyd EF. Sequence and expression divergence of an ancient duplication of the chaperonin groESEL operon in Vibrio species. MICROBIOLOGY-SGM 2014; 160:1953-1963. [PMID: 24913685 DOI: 10.1099/mic.0.079194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen Vibrio vulnificus encodes a copy of the groESEL operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among Vibrionaceae specifically or Gammaproteobacteria in general. Among the Vibrionaceae complete genome sequences in the database (31 species), seven Vibrio species contained a copy of groESEL in each chromosome, including the human pathogens Vibrio cholerae, Vibrio parahaemolyticus and V. vulnificus. Phylogenetic analysis of GroEL among the Gammaproteobacteria indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the Vibrionaceae within the Gammaproteobacteria, groESEL chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of groEL from V. vulnificus cells grown under different conditions revealed differential expression between the copies. The data demonstrate that groEL-1 was more highly expressed during growth in exponential phase than groEL-2 and a similar pattern was also found in both V. cholerae and V. parahaemolyticus. Overall these data suggest that retention of both copies of groESEL in Vibrio species may confer an evolutionary advantage.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joseph J Kingston
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - W Brian Whitaker
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Megan R Carpenter
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Analuisa Cohen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|