1
|
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action. Int J Mol Sci 2025; 26:381. [PMID: 39796236 PMCID: PMC11719993 DOI: 10.3390/ijms26010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
Collapse
Affiliation(s)
| | | | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| |
Collapse
|
2
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
3
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Qassadi FI, Zhu Z, Monaghan TM. Plant-Derived Products with Therapeutic Potential against Gastrointestinal Bacteria. Pathogens 2023; 12:pathogens12020333. [PMID: 36839605 PMCID: PMC9967904 DOI: 10.3390/pathogens12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The rising burden of antimicrobial resistance and increasing infectious disease outbreaks, including the recent COVID-19 pandemic, has led to a growing demand for the development of natural products as a valuable source of leading medicinal compounds. There is a wide variety of active constituents found in plants, making them an excellent source of antimicrobial agents with therapeutic potential as alternatives or potentiators of antibiotics. The structural diversity of phytochemicals enables them to act through a variety of mechanisms, targeting multiple biochemical pathways, in contrast to traditional antimicrobials. Moreover, the bioactivity of the herbal extracts can be explained by various metabolites working in synergism, where hundreds to thousands of metabolites make up the extract. Although a vast amount of literature is available regarding the use of these herbal extracts against bacterial and viral infections, critical assessments of their quality are lacking. This review aims to explore the efficacy and antimicrobial effects of herbal extracts against clinically relevant gastrointestinal infections including pathogenic Escherichia coli, toxigenic Clostridioides difficile, Campylobacter and Salmonella species. The review will discuss research gaps and propose future approaches to the translational development of plant-derived products for drug discovery purposes for the treatment and prevention of gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Fatimah I. Qassadi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
5
|
Caballero Gómez N, Manetsberger J, Benomar N, Castillo Gutiérrez S, Abriouel H. Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. Front Microbiol 2022; 13:1014169. [PMID: 36299714 PMCID: PMC9589356 DOI: 10.3389/fmicb.2022.1014169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
The spread of multidrug resistant (MDR) bacteria and resistance genes along the food chain and the environment has become a global, but silent pandemic. To face this challenge, it is of outmost importance to develop efficient strategies to reduce potential contamination by these agents. In the present study, 30 strains of Enterococcus sp., Staphylococcus sp. and Pseudomonas sp. isolated from various surfaces throughout the meat production chain in a goat and lamb slaughterhouse were characterized as MDR bacteria harboring several antibiotic resistance genes (ARGs). The antimicrobial efficacy of natural essential oil components “EOCs” (carvacrol “CA,” cinnamaldehyde “CIN,” eugenol “EU,” geraniol “GE,” limonene “LI” and thymol “TH”), HLE disinfectant solution (3–6% H2O2; 2.2–4.4% lactic acid and 12.5–25 mM EDTA in water) and EDTA was tested against these MDR bacteria. Results showed that Minimum Inhibitory Concentrations (MIC) were compound and strain dependent. In addition, the synergistic effect of these antimicrobials was evaluated at 1/2 MIC. Here our study showed particularly promising results regarding the inhibitory effect at sub-inhibitory concentrations, which were confirmed by the analysis of bacterial growth dynamics over 72 h. Furthermore, the inhibitory effect of EOCs, HLE disinfectant solution and EDTA or their combinations was studied in developing and established biofilms of MDR bacteria obtaining variable results depending on the morphological structure of the tested strain and the phenolic character of the EOCs. Importantly, the combination of EOCs with HLE or EDTA showed particularly positive results given the effective inhibition of biofilm formation. Moreover, the synergistic combinations of EU and HLE/EDTA, TH, CA, GE, LI or CIN + EDTA/HLE caused log reductions in established biofilms of several strains (1–6 log10 CFU) depending on the species and the combination used, with Pseudomonas sp. strains being the most susceptible. Given these results, we propose novel antimicrobial formulations based on the combination of sub-inhibitory concentrations of EOCs and HLE or EDTA as a highly promising alternative to currently used approaches. This novel strategy notably shows great potential to efficiently decrease the emergence and spread of MDR bacteria and ARGs in the food chain and the environment, thus supporting the decrease of resistomes and pathogenesis in clinical and industrial areas while preserving the antibiotic therapeutic action.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Julia Manetsberger
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Sonia Castillo Gutiérrez
- Área de Estadística e Investigación Operativa, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
- *Correspondence: Hikmate Abriouel,
| |
Collapse
|
6
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Guo T, Li M, Sun X, Wang Y, Yang L, Jiao H, Li G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front Pharmacol 2021; 12:744494. [PMID: 34603057 PMCID: PMC8484878 DOI: 10.3389/fphar.2021.744494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Mengying Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoli Sun
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuhang Wang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liying Yang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongmei Jiao
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| |
Collapse
|
8
|
Rossi C, Chaves-López C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit Rev Food Sci Nutr 2020; 62:2172-2191. [PMID: 33249878 DOI: 10.1080/10408398.2020.1851169] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial biofilms represent a constant source of contamination in the food industry, being also a real threat for human health. In fact, most of biofilm-producing bacteria are becoming resistant to sanitizers, thus arousing the interest in natural alternatives to prevent biofilm formation on foods and food-contact surfaces. In particular, studies on biofilm control by essential oils (EOs) application are increasing, being EOs characterized by unique mixtures of compounds able to impair the mechanisms of biofilm development. This review reports the anti-biofilm properties of EOs in bacterial biofilm control (inhibition, removal and prevention of biofilm dispersion) on food-contact surfaces. The relationship between EOs effect and composition, concentration, involved bacteria, and surfaces is discussed, and the possible sites of action are also elucidated. The findings prove the high biofilm controlling capability of EOs through the regulation of genes and proteins implicated in motility, Quorum Sensing and exopolysaccharides (EPS) matrix. Moreover, incorporation in nanosized delivery systems, formulation of blends and combination of EOs with other strategies can increase their anti-biofilm activity. This review provides an overview of the current knowledge of the EOs effectiveness in controlling bacterial biofilm on food-contact surfaces, providing valuable information for improving EOs use as sanitizers in food industries.
Collapse
Affiliation(s)
- Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Manila Casaccia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, TE, Italy
| |
Collapse
|
9
|
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals (Basel) 2020; 10:ani10112150. [PMID: 33227911 PMCID: PMC7699210 DOI: 10.3390/ani10112150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Antimicrobial growth promoters (AGPs) are banned in Europe but still used in many countries including Asia. However, their indiscriminate use resulted in antibiotic-resistant bacterial strains that possibly transfer the resistant genes to the microorganisms pertinent to human health. Hence, it is essential to find alternatives that can improve the production performance in broiler chickens. In this scenario, phytobiotics or phytogenic feed additives (PFAs) are widely investigated to evaluate their influence on improving gut health, increasing digestibility, and thereby the growth performance. The present study is a continuity of our experiments on dietary inclusion of Piper betle and Persicaria odorata leaf meal and the first of its kind to evaluate the comparative efficacy of phytobiotics (Piper betle and Persicaria odorata leaf meal), with halquinol and tetracycline in broiler chickens. The current experiment findings indicated that, in comparison with the control group, either of the dietary treatments positively modulated the gut morphology, improved ileal digestibility, maintained the intestinal population of Lactobacillus and reduced the pathogenic bacteria such as Staphylococcus aureus, Salmonella, Escherichia coli, and Clostridium spp., thus improved the growth performance in broiler chickens. Abstract The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Punjab, Pakistan
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Arifah Abdul Kadir
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Skoto 2346, Nigeria
| |
Collapse
|
10
|
Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 2020; 104:4281-4288. [PMID: 32215710 PMCID: PMC7190587 DOI: 10.1007/s00253-020-10542-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
The ability to rapidly detect viable pathogens in food is important for public health and food safety reasons. Culture-based detection methods, the traditional means of demonstrating microbial viability, tend to be laborious, time consuming and slow to provide results. Several culture-independent methods to detect viable pathogens have been reported in recent years, including both nucleic acid-based (PCR combined with use of cell viability dyes or reverse-transcriptase PCR to detect messenger RNA) and phage-based (plaque assay or phage amplification and lysis plus PCR/qPCR, immunoassay or enzymatic assay to detect host DNA, progeny phages or intracellular components) methods. Some of these newer methods, particularly phage-based methods, show promise in terms of speed, sensitivity of detection and cost compared with culture for food testing. This review provides an overview of these new approaches and their food testing applications, and discusses their current limitations and future prospects in relation to detection of viable pathogens in food. KEY POINTS: • Cultural methods may be 'gold standard' for assessing viability of pathogens, but they are too slow. • Nucleic acid-based methods offer speed of detection but not consistently proof of cell viability. • Phage-based methods appear to offer best alternative to culture for detecting viable pathogens.
Collapse
Affiliation(s)
- Antonio C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.
| |
Collapse
|
11
|
Ashrafudoulla M, Mizan MFR, Ha AJW, Park SH, Ha SD. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol 2020; 91:103500. [PMID: 32539983 DOI: 10.1016/j.fm.2020.103500] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate the antibacterial and antibiofilm activity of eugenol against V. parahaemolyticus planktonic and biofilm cells and the involved mechanisms as well. Atime-kill assay, a biofilm formation assay on the surface of crab shells, an assay to determine the reduction of virulence using eugenol at different concentrations, energy-filtered transmission electron microscope (EF-TEM), field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscope (CLSM) and high-performance liquid chromatography (HPLC) were performed to evaluate the antibacterial and antibiofilm activity of eugenol. The results indicated that different concentrations of eugenol (0.1-0.6%) significantly reduced biofilm formation, metabolic activities, and secretion of extracellular polysaccharide (EPS), with effective antibacterial effect. Eugenol at 0.4% effectively eradicated the biofilms formed by clinical and environmental V. parahaemolyticus on crab surface by more than 4.5 and 4 log CFU/cm2, respectively. At 0.6% concentration, the reduction rates of metabolic activities for ATCC27969 and NIFS29 were 79% and 68%, respectively. Whereas, the reduction rates of EPS for ATCC27969 and NIFS29 were 78% and 71%, respectively. On visual evaluation, significant results were observed for biofilm reduction, live/dead cell detection, and quorum sensing (QS). This study demonstrated that eugenol can be used to control V. parahaemolyticus biofilms and biofilm-related infections and can be employed for the protection of seafood.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea.
| |
Collapse
|
12
|
Patel J, Yin HB, Bauchan G, Mowery J. Inhibition of Escherichia coli O157:H7 and Salmonella enterica virulence factors by benzyl isothiocyanate. Food Microbiol 2019; 86:103303. [PMID: 31703885 DOI: 10.1016/j.fm.2019.103303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/17/2023]
Abstract
Escherichia coli O157:H7 and Salmonella enterica are foodborne pathogens with major public health concern in the U.S. These pathogens utilize several virulence factors to initiate infections in humans. The antimicrobial effect of seven glucosinolate hydrolysis compounds against Salmonella and E. coli O157:H7 was investigated by the disc diffusion assay. Among the tested compounds, benzyl isothiocyanate (BIT), which exerted the highest antimicrobial activity, was evaluated for its anti-virulence properties against these pathogens. The effect of BIT on motility of Salmonella and E. coli O157:H7 and Shiga toxin production by E. coli O157:H7 was determined by the motility assay and ELISA procedure, respectively. Confocal and transmission electron microscopy (TEM) procedures were used to determine bacterial damage at the cellular level. Results revealed that sub-inhibitory concentrations (SICs) of BIT significantly inhibited the motility of both bacteria (P < 0.05). Shiga toxin production by E. coli O157:H7 was decreased by ~32% in the presence of BIT at SICs. TEM results showed the disruption of outer membrane, release of cytoplasmic contents, and cell lysis following BIT treatment. Results suggest that BIT could be potentially used to attenuate Salmonella and E. coli O157:H7 infections by reducing the virulence factors including bacterial motility and Shiga toxin production.
Collapse
Affiliation(s)
- Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA.
| | - Hsin-Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA
| | - Gary Bauchan
- U.S. Department of Agriculture, Agricultural Research Service, SGIL Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA
| | - Joseph Mowery
- U.S. Department of Agriculture, Agricultural Research Service, SGIL Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA
| |
Collapse
|
13
|
Makrane H, Aziz M, Mekhfi H, Ziyyat A, Legssyer A, Melhaoui A, Berrabah M, Bnouham M, Alem C, Elombo FK, Gressier B, Desjeux JF, Eto B. Origanum majorana L. extract exhibit positive cooperative effects on the main mechanisms involved in acute infectious diarrhea. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111503. [PMID: 30217790 DOI: 10.1016/j.jep.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. (Lamiaceae) is commonly used in Moroccan folk medicine to treat infantile colic, abdominal discomfort and diarrhea. Liquid stools and abdominal discomfort observed in acute infectious diarrhea are the consequences of imbalance between intestinal water secretion and absorption in the lumen, and relaxation of smooth muscle surrounding the intestinal mucosa. AIM OF THE STUDY The objective of our study was to see if aqueous extract of Origanum majorana L. (AEOM) may exhibit an effect on those deleterious mechanisms. MATERIALS AND METHODS The effect of AEOM on electrogenic Cl- secretion and Na+ absorption, the two main mechanisms underlying water movement in the intestine, was assessed on intestinal pieces of mice intestine mounted, in vitro, in Ussing chambers. AEOM effect on muscle relaxation was measured on rat intestinal smooth muscle mounted in an isotonic transducer. RESULTS 1) AEOM placed on the serosal (i.e. blood) side of the piece of jejunum entirely inhibited in a concentration-dependent manner the Forskolin-induced electrogenic chloride secretion, with an IC50 = 654 ± 8 µg/mL. 2) AEOM placed on the mucosal (i.e. luminal) side stimulated in a concentration-dependent manner an electrogenic Na+ absorption, with an IC50 = 476.9 ± 1 µg/mL. 3) AEOM (1 mg/mL) inhibition of Forskolin-induced electrogenic secretion was almost entirely prevented by prior exposure to Ca++ channels or neurotransmitters inhibitors. 4) AEOM (1 mg/mL) proabsorptive effect was greater in the ileum and progressively declined in the jejunum, distal colon and proximal colon (minimal). 5) AEOM inhibited in a concentration-dependent manner smooth muscle Carbachol or KCl induced contraction, with an IC50 = 1.64 ± 0.2 mg/mL or 1.92 ± 0.8 mg/mL, respectively. CONCLUSION the present results indicate that aqueous extract of Origanum majorana L. exhibit positive cooperative effects on the main mechanisms that are involved in acute infectious diarrhea.
Collapse
Affiliation(s)
- Hanane Makrane
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohammed Aziz
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Ahmed Melhaoui
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Berrabah
- Laboratory of Chemistry, Mineral and Analytical Solid, Department of Chemistry, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Chakib Alem
- Laboratory of Biochemistry, Department of Biology, Faculty of Sciences & Techniques, Errachidia, Morocco
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France; Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | | | - Bruno Eto
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France.
| |
Collapse
|
14
|
Nair D, Vazhakkattu Thomas J, Dewi G, Noll S, Brannon J, Kollanoor Johny A. Reduction of Multidrug-Resistant Salmonella enterica Serovar Heidelberg Using a Dairy-Originated Probiotic Bacterium, Propionibacterium freudenreichii freudenreichii B3523, in Growing Turkeys. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
V T Nair D, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018; 7:E167. [PMID: 30314348 PMCID: PMC6210005 DOI: 10.3390/foods7100167] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica is one of the most ubiquitous enteropathogenic bacterial species on earth, and comprises more than 2500 serovars. Widely known for causing non-typhoidal foodborne infections (95%), and enteric (typhoid) fever in humans, Salmonella colonizes almost all warm- and cold-blooded animals, in addition to its extra-animal environmental strongholds. The last few decades have witnessed the emergence of highly virulent and antibiotic-resistant Salmonella, causing greater morbidity and mortality in humans. The emergence of several Salmonella serotypes resistant to multiple antibiotics in food animals underscores a significant food safety hazard. In this review, we discuss the various antibiotic-resistant Salmonella serotypes in food animals and the food supply, factors that contributed to their emergence, their antibiotic resistance mechanisms, the public health implications of their spread through the food supply, and the potential antibiotic alternatives for controlling them.
Collapse
Affiliation(s)
- Divek V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| | | | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| |
Collapse
|
16
|
Hu Q, Zhou M, Wei S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J Food Sci 2018; 83:1476-1483. [PMID: 29802735 DOI: 10.1111/1750-3841.14180] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 01/23/2023]
Abstract
As potential and valuable antiseptics in the food industry, clove oil and its main effective composition eugenol show beneficial advantages on antibacterial and antifungal activity, aromaticity, and safety. Researches find that both clove oil and eugenol express significantly inhibitory effects on numerous kinds of food source microorganisms, and the mechanisms are associated with reducing the migratory and adhesion and inhibiting the synthesis of biofilm and various virulence factors of these microorganisms. Clove oil and eugenol are generally regarded as safe in vivo experiments. However, they may express certain cytotoxicity on fibroblasts and other cells in vitro. Studies on the quality and additive standard of clove oil and eugenol should be strengthened to promote the antiseptic effects of them in the food antiseptic field.
Collapse
Affiliation(s)
- Qiao Hu
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Meifang Zhou
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Shuyong Wei
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| |
Collapse
|