1
|
Dhaliwal HK, Sonkar S, V P, Puente L, Roopesh MS. Process Technologies for Disinfection of Food-Contact Surfaces in the Dry Food Industry: A Review. Microorganisms 2025; 13:648. [PMID: 40142540 PMCID: PMC11945173 DOI: 10.3390/microorganisms13030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in cross-contamination and compromise the safety of low-aw foods. The bactericidal potential of various conventional and novel disinfection technologies has been explored in the dry food industry. However, the attachment behavior of bacterial pathogens to food-contact surfaces in low-aw conditions and their subsequent response to the cleaning and disinfection practices requires further elucidation. The review summarizes the elements that influence disinfection, such as the presence of organic residues, persistent strains, and the possibility of microbial biotransfer. This review explores in detail the selected dry disinfection technologies, including superheated steam, fumigation, alcohol-based disinfectants, UV radiation, and cold plasma, that can be used in the dry food industry. The review also highlights the use of several wet disinfection technologies employing chemical antimicrobial agents against surface-dried microorganisms on food-contact surfaces. In addition, the disinfection efficacy of conventional and novel technologies against surface-dried microorganisms on food-contact surfaces, as well as their advantages and disadvantages and underlying mechanisms, are discussed. Dry food processing facilities should implement stringent disinfection procedures to ensure food safety. Environmental monitoring procedures and management techniques are essential to prevent adhesion and allow the subsequent inactivation of microorganisms.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Shivani Sonkar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Prithviraj V
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Luis Puente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| |
Collapse
|
2
|
Baker J, Rana YS, Chen L, Beary MA, Balasubramaniam VM, Snyder AB. Superheated Steam Can Rapidly Inactivate Bacteria, But Manual Operation of Commercial Units Resulted in Limited Efficacy During Dry Surface Sanitization. J Food Prot 2025; 88:100461. [PMID: 39900183 DOI: 10.1016/j.jfp.2025.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Although bench-scale studies have shown that superheated steam is effective for microbial inactivation on surfaces, commercial systems in the hands of human operators have not been evaluated. The first aim of this study was to characterize the temperature of stainless-steel surfaces treated with a commercial unit. The geometric center of the stainless-steel surface was treated with superheated steam at 400 °C from a fixed position. Surface temperatures exceeded 300 °C at the impingement point during 5 min exposure but decreased as surface thickness and distance increased. Ambient temperature (23.5, 12.8, 4 °C) negatively impacted surface temperatures. Next, we evaluated the thermal inactivation of spot-inoculated Enterococcus faecium NRRL B-2354 on stainless steel surfaces. Inactivation of E. faecium decreased from 9.6 ± 0.1 log CFU/cm2 after 10 s of treatment at the point of impingement to 2.8 ± 0.7 log CFU/cm2 after 10 s of treatment at a distance 4.6 cm away from the impingement point (p < 0.05). Finally, we assessed the effects of training on manual operation by human subjects. Human subjects (N = 24) who completed trainings were asked to treat inoculated stainless-steel surfaces. While training improved manual operation of the unit and microbial inactivation of E. faecium (p < 0.05), the highest average reduction achieved by human subjects was only 3.6 ± 1.3 log CFU/cm2. These findings suggest that the tight radius of high surface temperatures around the nozzle limits the effectiveness of manually operated superheated steam units for microbial inactivation. Thus, equipment design improvements are needed to ensure uniform treatment and adequate surface sanitation.
Collapse
Affiliation(s)
- Jakob Baker
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Long Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | - V M Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Acosta RB, Durantini EN, Spesia MB. Evaluation of quantification methods to determine photodynamic action on mono- and dual-species bacterial biofilms. Photochem Photobiol Sci 2024; 23:1195-1208. [PMID: 38703274 DOI: 10.1007/s43630-024-00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
The effect of photodynamic inactivation (PDI) sensitized by 5,10,15,20-tetra(4-N,N,N-trimethylammoniophenyl)porphyrin (TMAP4+) on different components of mono- and dual-species biofilms of Staphylococcus aureus and Escherichia coli was determined by different methods. First, the plate count technique showed that TMAP4+-PDI was more effective on S. aureus than E. coli biofilm. However, crystal violet staining revealed no significant differences between before and after PDI biofilms of both bacteria. On the other hand, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method indicated a reduction in viable cells as the light exposure time increases in both, mono- and dual-species biofilms. Furthermore, it was determined that as the irradiation time increases, the amount of extracellular polymeric substances present in the biofilms decreased. This effect was presented in both strains and in the mixed biofilm, being more evident in S. aureus mono-specie biofilm. Finally, scanning electron microscopy analysis showed a decrease in the number of cells forming the biofilm after photosensitization treatments. This information makes it possible to determine whether the photodynamic action is based on damage to metabolic activity, extracellular matrix and/or biomass, which may be useful in establishing a fully effective PDI protocol for the treatment of microorganisms growing as biofilms.
Collapse
Affiliation(s)
- Rocío B Acosta
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
4
|
Kim SH, Park SH, Ahn JB, Kang DH. Inactivation of E. coli O157:H7, Salmonella enterica, and L. monocytogenes through semi-continuous superheated steam treatment with additional effects of enhancing initial germination rate and salinity tolerance. Food Microbiol 2024; 117:104373. [PMID: 37918996 DOI: 10.1016/j.fm.2023.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023]
Abstract
Superheated steam (SHS) is a powerful technology used to reduce bacteria on food surfaces while causing less damage to the underlying sublayer of food compared to conventional heating treatments. In this study, a semi-continuous SHS system was developed to inactivate foodborne pathogens within 1 s (Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes) on radish seed surfaces and to enhance the seeds' salinity tolerance, which is vital for adapting to arid and semi-arid regions. The temperature of the SHS was set to 200 °C and 300 °C, with flow rates of 5 m/s and 7 m/s, and treatments were cycled either once or three times. As a result, increased temperature (200 °C-300 °C) and number of treatments (1 time to 3 times) led to a significantly larger microbial reduction on the surface of radish seeds. E. coli O157:H7, S. enterica, and L. monocytogenes were reduced by 4.42, 4.73, and 3.95 log CFU/g (P < 0.05), respectively, after three SHS treatments at 300 °C and 7 m/s. However, due to the ongoing potential for recovery of residual microorganisms, further research involving combinations is essential to enhance the microbicidal effect. Water imbibition showed significantly higher values in the SHS-treated group up to 30 min, indicating faster germination rates in the SHS-treated group (71.3-81.3%) compared to the control group (52.7%) on the second day, indicating a significant enhancement in germination rate. In addition, the salinity resistance of the radish seeds increased after SHS treatment. When moisturized with 0.5% NaCl solution, more radish seeds germinated after treatment with SHS (40%) than controls (22.7%) (P < 0.05). The results of this study, the first to apply semi-continuous SHS to seeds, are expected to serve as a cornerstone for future pilot-scale investigations aiming to implement the system within the seed industry.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Jun-Bae Ahn
- 4 School of Food Service & Culinary Arts, Seowon University, Cheongju, Chungbuk, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
5
|
Lee JI, Kim SS, Kang DH. Characteristics of Staphylococcus aureus biofilm matured in tryptic soy broth, low-fat milk, or whole milk samples along with inactivation by 405 nm light combined with folic acid. Food Microbiol 2023; 116:104350. [PMID: 37689424 DOI: 10.1016/j.fm.2023.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 09/11/2023]
Abstract
In the present study, the characteristics of Staphylococcus aureus biofilms matured in tryptic soy broth (TSB), low-fat milk, or whole milk samples were identified along with their resistance to 405 nm light with or without folic acid. Phenotypic properties of carbohydrate and protein contents in extracellular polymeric substance (EPS) of S. aureus biofilms matured in different conditions were identified. The carbohydrate content was higher in the biofilm matured in low-fat milk (1.27) than the samples matured in whole milk (0.58) and TSB (0.10). Protein content in the EPS of biofilm was higher in the sample matured in whole milk (6.59) than the samples matured in low-fat milk (3.24) and TSB (2.08). Moreover, the maturation condition had a significant effect on the membrane lipid composition of the biofilm, producing more unsaturated fatty acids in biofilm matured in milk samples. These changes in biofilm matured in milk samples increased the resistance of S. aureus to 405 nm light in the presence of folic acid (LFA). Additionally, transcriptomic analysis was conducted to identify the response of S. aureus biofilm to LFA treatment. Several genes related to DNA and protein protection from oxidative stress along with biofilm accumulation were overexpressed in the LFA-treated biofilms. These results indicate the maturation of S. aureus biofilm in various samples and the biofilms responses to bactericidal treatments.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
6
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
7
|
Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023; 28:molecules28062432. [PMID: 36985403 PMCID: PMC10058477 DOI: 10.3390/molecules28062432] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Biofilms are microbial aggregation membranes that are formed when microorganisms attach to the surfaces of living or nonliving things. Importantly, biofilm properties provide microorganisms with protection against environmental pressures and enhance their resistance to antimicrobial agents, contributing to microbial persistence and toxicity. Thus, bacterial biofilm formation is part of the bacterial survival mechanism. However, if foodborne pathogens form biofilms, the risk of foodborne disease infections can be greatly exacerbated, which can cause major public health risks and lead to adverse economic consequences. Therefore, research on biofilms and their removal strategies are very important in the food industry. Food waste due to spoilage within the food industry remains a global challenge to environmental sustainability and the security of food supplies. This review describes bacterial biofilm formation, elaborates on the problem associated with biofilms in the food industry, enumerates several kinds of common foodborne pathogens in biofilms, summarizes the current strategies used to eliminate or control harmful bacterial biofilm formation, introduces the current and emerging control strategies, and emphasizes future development prospects with respect to bacterial biofilms.
Collapse
|
8
|
The combined effect of folic acid and 365–405 nm light emitting diode for inactivation of foodborne pathogens and its bactericidal mechanisms. Int J Food Microbiol 2022; 373:109704. [DOI: 10.1016/j.ijfoodmicro.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
9
|
Sharma S, Jaiswal AK, Duffy B, Jaiswal S. Food Contact Surfaces: Challenges, Legislation and Solutions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
- Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin, Dublin, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin, Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Park HW, Xu J, Balasubramaniam V, Snyder AB. The effect of water activity and temperature on the inactivation of Enterococcus faecium in peanut butter during superheated steam sanitation treatment. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
|
12
|
Weerarathne P, Payne J, Saha J, Kountoupis T, Jadeja R, Jaroni D. Evaluating the efficacy of sodium acid sulfate to reduce Escherichia coli O157:H7 and its biofilms on food-contact surfaces. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Thermal and non-thermal treatment effects on Staphylococcus aureus biofilms formed at different temperatures and maturation periods. Food Res Int 2020; 137:109432. [PMID: 33233114 DOI: 10.1016/j.foodres.2020.109432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate the effect of temperature and maturation period on the resistance of Staphylococcus aureus biofilms to thermal and non-thermal treatments. First, biofilm development was compared at three different temperatures (15, 25, and 37°C) for 5 days. The cell population at 15 and 25°C remained relatively consistent approximately at 6.3 log CFU/cm2, whereas 37°C resulted in the highest cell population on day 1 (7.6 log CFU/cm2) followed by a continual decline. Then, biofilm resistance to steam and sodium hypochlorite (NaOCl) treatments was evaluated. Obtained results highlighted that biofilms had different resistance to both treatments depending on development conditions. Specifically, steam treatment of 10 s eliminated 4.1 log CFU/cm2 of the biofilm formed at 25°C for 5 days. The same treatment inactivated over 5 log population of biofilms developed in other temperature and maturation period conditions. Treatment with NaOCl reduced approximately 1 log CFU/cm2 of biofilm cells developed at 25°C for 5 days. However, inactivation was found to be over 2 log CFU/cm2 under other development conditions. An extracellular polymeric substances (EPS) quantification using 96-well plates and stainless steel coupons was conducted. In the 96-well plate experiment, it was found that the highest amount of polysaccharide was secreted at 25°C (p < 0.05), while total biomass and protein contents were greatest at 37°C (p < 0.05). No significant difference in EPS content was observed for stainless steel, but the results displayed a similar trend to the 96-well plate. In particular, biofilms developed at 25°C tended to secret the highest amount of polysaccharide, which aligned with the current literature. This finding indicated that polysaccharide was the main contribution to the enhanced resistance of S. aureus biofilms. Overall, it was shown that biofilms formed at 25°C for 5 days exhibited the greatest resistance to thermal and nonthermal treatments due to the elevated exopolysaccharide secretion. This study demonstrates that temperature and maturation period significantly affect the resistance of S. aureus biofilms to thermal and non-thermal treatments.
Collapse
|