1
|
Lambrechts K, Rip D. Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity. Microbiologyopen 2024; 13:e70003. [PMID: 39420711 PMCID: PMC11486915 DOI: 10.1002/mbo3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. Listeria monocytogenes is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given L. monocytogenes' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying L. monocytogenes. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of L. monocytogenes found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food ScienceStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
2
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
3
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
4
|
Genotyping of Listeria monocytogenes isolates by high-resolution melting curve (HRM) analysis of tandem repeat locus. Braz J Infect Dis 2022; 26:102348. [PMID: 35341738 PMCID: PMC9387474 DOI: 10.1016/j.bjid.2022.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is responsible for causing listeriosis, a type of food poisoning with high mortality. This bacterium is mainly transmitted to humans through the consumption of contaminated foods. Detection of L. monocytogenes through molecular methods is crucial for food safety and clinical diagnosis. Present techniques are characterized by low discrimination power and high cost, as well as being time-consuming and taking several days to give the final result. In our study, MLVA-HRM (Multiple-Locus Variable-number tandem repeats Analysis ‒ High-Resolution Melting) was investigated as an alternative method for a fast and precise method for the genotyping of L. monocytogenes isolates. Forty-eight isolates of L. monocytogenes obtained from the microbial bank of Department of Microbiology, Iran University of Medical Sciences, were typed by MLVA-HRM analysis using five Variable Numbers of Tandem Repeat (VNTR) loci. A total of 43 different types were obtained. This research demonstrated the usefulness of the MLVA-HRMA method and its ability to discriminate L. monocytogenes isolates. Since this method is easier and more efficient than existing methods, it can be widely used in food processing plants and diagnostic laboratories as a fast and accurate method.
Collapse
|
5
|
Keet R, Rip D. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiol 2021; 7:40-58. [PMID: 33659768 PMCID: PMC7921373 DOI: 10.3934/microbiol.2021004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
Food-borne disease outbreaks are common and offer valuable insights into the causes, impacts, and mechanisms underlying food pathogens. This also serves as a good foundation to validate the performance of current best practice control methods, for example antibiotics, that are used in the fight against food pathogens. Listeriosis outbreaks, caused by Listeria monocytogenes, is no exception. In 2018, South Africa experienced the largest global listeriosis outbreak recorded to date. However, despite the scale of this outbreak, information on the bacterium and its resistance towards antibiotics is still severely lacking. Furthermore, until now it remained to be determined whether L. monocytogenes antibiotic resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of this study was therefore to evaluate the efficacy of antibiotics that are currently used against L. monocytogenes. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion method, L. monocytogenes isolates (n = 177) from diverse origins in the Western Cape, South Africa (clinical, food, and environment) were tested for susceptibility against five different antibiotics, namely ampicillin, erythromycin, chloramphenicol, gentamicin, and tetracycline. Isolates were collected over a period of two years (2017-2019). All isolates were susceptible to ampicillin, the currently recommended antibiotic, while a large number of isolates were resistant to chloramphenicol, erythromycin, and tetracycline. Also, patterns of resistance observed here are different to patterns observed elsewhere. The findings of this study demonstrate that it is imperative to continuously monitor the efficacy of currently recommended antibiotics, since resistance patterns can quickly develop when such antibiotics are overutilized, and secondly, that it is crucial to assess local antibiotic resistance patterns in conjunction with global patterns, since the latter is not necessarily generalizable to local scales.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food Science, Centre for Food Safety, Stellenbosch University, South Africa
| |
Collapse
|