1
|
Hannum AJ, Cork TE, Setsompop K, Ennis DB. Phase stabilization with motion compensated diffusion weighted imaging. Magn Reson Med 2024; 92:2312-2327. [PMID: 38997801 PMCID: PMC11444045 DOI: 10.1002/mrm.30218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Diffusion encoding gradient waveforms can impart intra-voxel and inter-voxel dephasing owing to bulk motion, limiting achievable signal-to-noise and complicating multishot acquisitions. In this study, we characterize improvements in phase consistency via gradient moment nulling of diffusion encoding waveforms. METHODS Healthy volunteers received neuro (N = 10 $$ N=10 $$ ) and cardiac (N = 10 $$ N=10 $$ ) MRI. Three gradient moment nulling levels were evaluated: compensation for position (M 0 $$ {M}_0 $$ ), position + velocity (M 1 $$ {M}_1 $$ ), and position + velocity + acceleration (M 1 + M 2 $$ {M}_1+{M}_2 $$ ). Three experiments were completed: (Exp-1) Fixed Trigger Delay Neuro DWI; (Exp-2) Mixed Trigger Delay Neuro DWI; and (Exp-3) Fixed Trigger Delay Cardiac DWI. Significant differences (p < 0 . 05 $$ p<0.05 $$ ) of the temporal phase SD between repeated acquisitions and the spatial phase gradient across a given image were assessed. RESULTS M 0 $$ {M}_0 $$ moment nulling was a reference for all measures. In Exp-1, temporal phase SD forG z $$ {G}_z $$ diffusion encoding was significantly reduced withM 1 $$ {M}_1 $$ (35% of t-tests) andM 1 + M 2 $$ {M}_1+{M}_2 $$ (68% of t-tests). The spatial phase gradient was reduced in 23% of t-tests forM 1 $$ {M}_1 $$ and 2% of cases forM 1 + M 2 $$ {M}_1+{M}_2 $$ . In Exp-2, temporal phase SD significantly decreased withM 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling only forG z $$ {G}_z $$ (83% of t-tests), but spatial phase gradient significantly decreased with onlyM 1 $$ {M}_1 $$ (50% of t-tests). In Exp-3,M 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling significantly reduced temporal phase SD and spatial phase gradients (100% of t-tests), resulting in less signal attenuation and more accurate ADCs. CONCLUSION We characterized gradient moment nulling phase consistency for DWI. Using M1 for neuroimaging and M1 + M2 for cardiac imaging minimized temporal phase SDs and spatial phase gradients.
Collapse
Affiliation(s)
- Ariel J Hannum
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
| |
Collapse
|
2
|
Kim B, Mathai TS, Helm K, Pinto PA, Summers RM. Classification of Multi-Parametric Body MRI Series Using Deep Learning. IEEE J Biomed Health Inform 2024; 28:6791-6802. [PMID: 39178097 PMCID: PMC11574742 DOI: 10.1109/jbhi.2024.3448373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently. Using mpMRI data from various institutions, multiple deep learning-based classifiers of ResNet, EfficientNet, and DenseNet are trained to classify 8 different MRI series, and their performance is compared. Then, the best-performing classifier is identified, and its classification capability under the setting of different training data quantities is studied. Also, the model is evaluated on the out-of-training-distribution datasets. Moreover, the model is trained using mpMRI exams obtained from different scanners in two training strategies, and its performance is tested. Experimental results show that the DenseNet-121 model achieves the highest F1-score and accuracy of 0.966 and 0.972 over the other classification models with p-value 0.05. The model shows greater than 0.95 accuracy when trained with over 729 studies of the training data, whose performance improves as the training data quantities grow larger. On the external data with the DLDS and CPTAC-UCEC datasets, the model yields 0.872 and 0.810 accuracy for each. These results indicate that in both the internal and external datasets, the DenseNet-121 model attains high accuracy for the task of classifying 8 body MRI series types.
Collapse
|
3
|
Dempsey PJ, Farrelly C, Cronin CG, Fenlon HM. Preoperative imaging of colorectal liver metastases: what the radiologist and the multidisciplinary team need to know. Br J Radiol 2024; 97:1602-1618. [PMID: 39078288 PMCID: PMC11417391 DOI: 10.1093/bjr/tqae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
The management of patients with colorectal liver metastases (CRLM) has transformed over the past 2 decades. Advances in surgical techniques, systemic therapies, and local treatments have resulted in a paradigm shift. Disease that would once have been considered terminal is now frequently treated aggressively with both a disease-free and overall survival benefit. In line with the expanding range of treatment options, there has been an increase in the volume and complexity of imaging required in the management of these patients to ensure optimal patient selection and outcome. The radiologist plays a pivotal role in interpreting these studies, conveying the relevant information and informing the discussion at multidisciplinary team meetings. The purpose of this review is to provide an update for radiologists on the current surgical management of patients with CRLM highlighting specific imaging information that is required by the multidisciplinary team when assessing resectability and/or the need for additional liver-directed therapies.
Collapse
Affiliation(s)
- Philip J Dempsey
- Department of Radiology, Mater Misericordiae University Hospital, Dublin D07, Ireland
| | - Cormac Farrelly
- Department of Radiology, Mater Misericordiae University Hospital, Dublin D07, Ireland
| | - Carmel G Cronin
- Department of Radiology, Mater Misericordiae University Hospital, Dublin D07, Ireland
| | - Helen M Fenlon
- Department of Radiology, Mater Misericordiae University Hospital, Dublin D07, Ireland
| |
Collapse
|
4
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Maino C, Vernuccio F, Cannella R, Cortese F, Franco PN, Gaetani C, Giannini V, Inchingolo R, Ippolito D, Defeudis A, Pilato G, Tore D, Faletti R, Gatti M. Liver metastases: The role of magnetic resonance imaging. World J Gastroenterol 2023; 29:5180-5197. [PMID: 37901445 PMCID: PMC10600959 DOI: 10.3748/wjg.v29.i36.5180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
The liver is one of the organs most commonly involved in metastatic disease, especially due to its unique vascularization. It's well known that liver metastases represent the most common hepatic malignant tumors. From a practical point of view, it's of utmost importance to evaluate the presence of liver metastases when staging oncologic patients, to select the best treatment possible, and finally to predict the overall prognosis. In the past few years, imaging techniques have gained a central role in identifying liver metastases, thanks to ultrasonography, contrast-enhanced computed tomography (CT), and magnetic resonance imaging (MRI). All these techniques, especially CT and MRI, can be considered the non-invasive reference standard techniques for the assessment of liver involvement by metastases. On the other hand, the liver can be affected by different focal lesions, sometimes benign, and sometimes malignant. On these bases, radiologists should face the differential diagnosis between benign and secondary lesions to correctly allocate patients to the best management. Considering the above-mentioned principles, it's extremely important to underline and refresh the broad spectrum of liver metastases features that can occur in everyday clinical practice. This review aims to summarize the most common imaging features of liver metastases, with a special focus on typical and atypical appearance, by using MRI.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Federica Vernuccio
- University Hospital of Padova, Institute of Radiology, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, F Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Clara Gaetani
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
- School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Arianna Defeudis
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Giulia Pilato
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Davide Tore
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
6
|
Criss C, Nagar AM, Makary MS. Hepatocellular carcinoma: State of the art diagnostic imaging. World J Radiol 2023; 15:56-68. [PMID: 37035828 PMCID: PMC10080581 DOI: 10.4329/wjr.v15.i3.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Primary liver cancer is the fourth most common malignancy worldwide, with hepatocellular carcinoma (HCC) comprising up to 90% of cases. Imaging is a staple for surveillance and diagnostic criteria for HCC in current guidelines. Because early diagnosis can impact treatment approaches, utilizing new imaging methods and protocols to aid in differentiation and tumor grading provides a unique opportunity to drastically impact patient prognosis. Within this review manuscript, we provide an overview of imaging modalities used to screen and evaluate HCC. We also briefly discuss emerging uses of new imaging techniques that offer the potential for improving current paradigms for HCC characterization, management, and treatment monitoring.
Collapse
Affiliation(s)
- Cody Criss
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Arpit M Nagar
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, United States
| | - Mina S Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
7
|
Chamadol N, Syms R, Laopaiboon V, Promsorn J, Eurboonyanun K. New Imaging Techniques. Recent Results Cancer Res 2023; 219:109-145. [PMID: 37660333 DOI: 10.1007/978-3-031-35166-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The chapter discusses the advancement of new imaging techniques, the role of imaging in CCA diagnosis, anatomical and morphological classification, ultrasound screening of CCA, ultrasound findings of MF-CCA, PI-CCA, ID-CCA, the use of CT in CCA diagnosis, staging and treatment planning, CT volumetry and estimation of future liver remnant, post-treatment follow-up and surveillance, MRI imaging, Positron Emission Tomography (PET)/CT, limitations to contrast studies and resolution, internal receivers for CCA imaging, and in vitro imaging of CCA.
Collapse
Affiliation(s)
- Nittaya Chamadol
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Richard Syms
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Vallop Laopaiboon
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Julaluck Promsorn
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulyada Eurboonyanun
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
8
|
Liang X, Bi Z, Yang C, Sheng R, Xia X, Zhang Z, Dai Y, Zeng M. Free-Breathing Liver Magnetic Resonance Imaging With Respiratory Frequency-Modulated Continuous-Wave Radar-Trigger Technique: A Preliminary Study. Front Oncol 2022; 12:918173. [PMID: 35719930 PMCID: PMC9200370 DOI: 10.3389/fonc.2022.918173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose The aim of this study is to evaluate the performance of free-breathing liver MRI with a novel respiratory frequency-modulated continuous-wave radar-trigger (FT) technique on T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) for both healthy volunteers and patients in comparison to navigator-trigger (NT) and belt-trigger (BT) techniques. Methods In this prospective study, 17 healthy volunteers and 23 patients with known or suspected liver diseases were enrolled. Six sequences (T2WI and DWI with FT, NT, and BT techniques) were performed in each subject. Quantitative evaluation and qualitative assessment were analyzed by two radiologists. Overall image quality, blurring, motion artifacts, and liver edge delineations were rated on a 4-point Likert scale. The liver and lesion signal-to-noise ratio (SNR), the lesion-to-liver contrast-to-noise ratio (CNR), as well as the apparent diffusion coefficient (ADC) value were quantitatively calculated. Results For volunteers, there were no significant differences in the image quality Likert scores and quantitative parameters on T2WI and DWI with three respiratory-trigger techniques. For patients, NT was superior to other techniques for image quality on T2WI; conversely, little difference was found on DWI in qualitative assessment. The mean SNR of the liver on T2WI and DWI with BT, NT, and FT techniques was similar in patients, which is in line with volunteers. FT performed better in terms of higher SNR (705.13 ± 434.80) and higher CNR (504.41 ± 400.69) on DWI at b50 compared with BT (SNR: 651.83 ± 401.16; CNR:429.24 ± 404.11) and NT (SNR: 639.41 ± 407.98; CNR: 420.64 ± 416.61) (p < 0.05). The mean ADC values of the liver and lesion with different techniques in both volunteers and patients showed non-significant difference. Conclusion For volunteers, the performance of T2WI as well as DWI with three respiratory-trigger techniques was similarly good. As for patients, FT-DWI is superior to BT and NT techniques in terms of higher lesion SNR and CNR at b50.
Collapse
Affiliation(s)
- Xinyue Liang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Zhenghong Bi
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyuan Xia
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Zheng Zhang
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Kolta MFF, El Rheem NKA, Ibrahim AF, El-Mageed MRA. The role of MRI in comparison between benign and malignant chest wall masses in correlation with pathology. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumors that arise from the chest wall (including bone structures such as the sternum, clavicle, scapula, and ribs) or from adjacent soft tissues are less common than other parts of the body, and so the resulting unfamiliarity can make it difficult to limit the number of possible diagnoses. These tumors have a wide range of possibilities, including primary chest wall tumors arising from the bone or soft tissue, which are subdivided into malignant and benign tumors, and the secondary metastatic deposits. The aim of the study is to investigate the ability of MRI with diffusion sequence in differentiation between benign and malignant chest wall masses, which is subsequently reflected in the management of chest wall masses patients.
Main body
MRI has superior soft-tissue resolution and value for local assessment of primary tumors and accurate tissue characterization and plays a key role in preoperative staging to assess for multi-spatial and multi-compartment involvement. ADC values were obtained in 31 patients, and the mean ADC values of benign (13 patients) chest wall masses were 1.31 ± 0.50 × 10−3 mm2/s while the mean ADC values of the malignant (18 patients) chest wall masses were 0.98 ± 0.36 × 10−3 mm2/s. There was a statistically significant difference between the ADC values obtained from the malignant and benign chest wall masses (P < 0.001).
Conclusion
This study demonstrates that diffusion-weighted MR imaging is a growing imaging modality to predict the histopathological differentiation of malignant from benign chest wall masses.
Collapse
|
10
|
Elrefaey Hasan BM, Abd ElHamid HAE, Khater NH, ElGendy W, Abdelrahman AS. Role of DWI in evaluation of HCC after radiofrequency ablation compared to dynamic MRI using MRI (3 T). THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The purpose of this study was to investigate the diagnostic performance of diffusion weight imaging (DWI), apparent diffusion coefficient (ADC) map, normalized ADC liver, and normalized ADC spleen compared to the dynamic contrast-enhanced MRI (DCE-MRI) in the evaluation of residual hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) using 3 T (T) magnetic resonance imaging (MRI).
Results
A prospective study was performed on 40 patients with radiofrequency-ablated HCC, and 15 (37.5%) patients had viable lesion post-RFA, while 25 (62.5%) had non-viable lesions. DCE-MRI had a sensitivity, specificity, and accuracy of 100%, 100%, and 100%, respectively, compared to DWI which had a sensitivity, specificity, and accuracy of 80%, 88%, and 85%, respectively, for identifying post-RFA viable HCC. The sensitivity, specificity, and accuracy of ADC at a cutoff value of 1.01 × 10−3 mm2/s were 80%, 100%, and 97.1%, respectively. The optimal cutoff value of normalized ADC liver was 0.81 with a sensitivity of 73.3%, specificity of 96%, and accuracy of 92.8%. The sensitivity, specificity, and accuracy of normalized ADC spleen at a cutoff value of 1.22 were 80%, 92%, and 91.1%, respectively.
Conclusions
DWI-MRI is a reliable technique for assessing HCC after radiofrequency ablation. DWI-MRI with ADC may be used as an alternate sequence for assessing radiofrequency-ablated lesions in individuals who have a contraindication to the contrast media, and the normalized ADC value may be of additional benefit.
Collapse
|
11
|
Bonde A, Daly S, Kirsten J, Kondapaneni S, Mellnick V, Menias CO, Katabathina VS. Human Gut Microbiota-associated Gastrointestinal Malignancies: A Comprehensive Review. Radiographics 2021; 41:1103-1122. [PMID: 33989072 DOI: 10.1148/rg.2021200168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract houses trillions of microbes. The gut and various types of microorganisms, including bacteria, viruses, fungi, and archaea, form a complex ecosystem known as the gut microbiota, and the whole genome of the gut microbiota is referred to as the gut microbiome. The gut microbiota is essential for homeostasis and the overall well-being of a person and is increasingly considered an adjunct "virtual organ," with a complexity level comparable to that of the other organ systems. The gut microbiota plays an essential role in nutrition, local mucosal homeostasis, inflammation, and the mucosal immune system. An imbalanced state of the gut microbiota, known as dysbiosis, can predispose to development of various gastrointestinal malignancies through three speculated pathogenic mechanisms: (a) direct cytotoxic effects with damage to the host DNA, (b) disproportionate proinflammatory signaling inducing inflammation, and (c) activation of tumorigenic pathways or suppression of tumor-suppressing pathways. Several microorganisms, including Helicobacter pylori, Epstein-Barr virus, human papillomavirus, Mycoplasma species, Escherichia coli, and Streptococcus bovis, are associated with gastrointestinal malignancies such as esophageal adenocarcinoma, gastric adenocarcinoma, gastric mucosa-associated lymphoid tissue lymphoma, colorectal adenocarcinoma, and anal squamous cell carcinoma. Imaging plays a pivotal role in diagnosis and management of microbiota-associated gastrointestinal malignancies. Appropriate use of probiotics, fecal microbiota transplantation, and overall promotion of the healthy gut are ongoing areas of research for prevention and treatment of malignancies. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Apurva Bonde
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sean Daly
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Julia Kirsten
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sainath Kondapaneni
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Vincent Mellnick
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
12
|
Association between liver diffusion-weighted imaging apparent diffusion coefficient values and other measures of liver disease in pediatric autoimmune liver disease patients. Abdom Radiol (NY) 2021; 46:197-204. [PMID: 32462385 DOI: 10.1007/s00261-020-02595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple quantitative magnetic resonance imaging (MRI) methods have been described to noninvasively detect and characterize liver fibrosis, including diffusion-weighted imaging (DWI). PURPOSE To evaluate associations between liver MRI DWI apparent diffusion coefficient (ADC) values and clinical factors and other quantitative liver MRI metrics in pediatric patients with autoimmune liver disease (AILD). MATERIALS AND METHODS Fifty-seven research liver MRI examinations performed from January 2017 to August 2018 for pediatric AILD registry participants were evaluated. Liver DWI ADC values, liver and spleen stiffness (kPa), and iron-corrected T1 (cT1; Perspectum Diagnostics) were measured at four anatomic levels. Participant age, sex, and laboratory data (alanine aminotransferase [ALT], total bilirubin, alkaline phosphatase, gamma-glutamyl transferase [GGT]) were recorded. Spearman's rank-order correlation (rho) and multiple linear regression were used to evaluate the associations between liver ADC values and predictor variables. RESULTS Mean (SD) participant age was 14.8 (4.0) years, 45.6% (26/57) were girls. Mean liver DWI ADC value was 1.34 (0.14 × 10-3) mm2/s. Liver ADC values showed weak to moderate correlations with liver stiffness (r = - 0.42, p = 0.001), spleen stiffness (r = - 0.34; p = 0.015), whole-liver mean cT1 (r = - 0.39; p = 0.007), ALT (r = - 0.50; p = 0.0001), and GGT (r = - 0.48; p = 0.0004). Multiple linear regression showed liver stiffness (p = 0.0009) and sex (p = 0.023) to be independent predictors of liver ADC values. CONCLUSION Liver DWI ADC values are significantly associated with liver and spleen stiffnesses, liver cT1, ALT, GGT, and participant sex, with liver stiffness and sex remaining significant at multivariable regression. Liver ADC ultimately may play a role in multi-parametric prediction of chronic liver disease/fibrosis severity.
Collapse
|
13
|
Sung PS, Choi MH, Yang H, Lee SK, Chun HJ, Jang JW, Choi JY, Yoon SK, Choi JI, Lee YJ, Bae SH. Diffusion-Weighted Magnetic Resonance Imaging in Hepatocellular Carcinoma as a Predictor of a Response to Cisplatin-Based Hepatic Arterial Infusion Chemotherapy. Front Oncol 2020; 10:600233. [PMID: 33330098 PMCID: PMC7711158 DOI: 10.3389/fonc.2020.600233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to identify the utility of diffusion-weighted magnetic resonance (MR) imaging with an apparent diffusion coefficient (ADC) map as a predictor of the response of hepatocellular carcinoma (HCC) to cisplatin-based hepatic arterial infusion chemotherapy (HAIC). We retrospectively evaluated 113 consecutive patients with Barcelona Clinical Liver Cancer (BCLC) stage B or C HCC, who underwent gadoxetic acid-enhanced and diffusion-weighted MR imaging. The appropriate cutoff for the pretreatment tumor-to-liver ADC ratio was determined to be 0.741. Of the 113 patients, 50 (44%) presented with a pretreatment tumor-to-liver ADC ratio < 0.741 (low group). Evaluation of the treatment response after 2-3 cycles of HAIC in these 50 patients revealed that 21 patients (42%) experienced an objective response to HAIC. On the other hand, only 11 of the 63 patients (17%) with a pretreatment tumor-to-liver ADC ratio ≥ 0.741 (high group) showed an objective response. Thus, the objective response rate was significantly higher in the low group than in the high group (P = 0.006). Multivariate logistic regression analysis using parameters including perfusion alteration, percentage of non-enhancing portions, and pretreatment tumor-to-liver ADC ratio revealed that a pretreatment tumor-to-liver ADC ratio < 0.741 (odds ratio 3.217; P = 0.014) was the sole predictor of an objective response to HAIC. Overall survival rates were significantly higher in patients with objective responses to HAIC than in those without objective responses (P = 0.001 by log-rank test). In conclusion, patients with BCLC stage C or C HCC with a pretreatment tumor-to-liver ADC ratio < 0.741 showed a favorable intrahepatic response to cisplatin-based HAIC. Therefore, diffusion-weighted MR imaging can play a critical role as a predictor of response to cisplatin-based HAIC in unresectable HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Moon Hyung Choi
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Soon Kyu Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ho Jong Chun
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Joon-Il Choi
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Young Joon Lee
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
14
|
Steger GL, Salesov E, Richter H, Reusch CE, Kircher PR, Del Chicca F. Evaluation of the changes in hepatic apparent diffusion coefficient and hepatic fat fraction in healthy cats during body weight gain. Am J Vet Res 2020; 81:796-803. [PMID: 32969732 DOI: 10.2460/ajvr.81.10.796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the change in mean hepatic apparent diffusion coefficient (ADC) and hepatic fat fraction (HFF) during body weight gain in cats by use of MRI. ANIMALS 12 purpose-bred adult neutered male cats. PROCEDURES The cats underwent general health and MRI examination at time 0 (before dietary intervention) and time 1 (after 40 weeks of being fed high-energy food ad libitum). Sequences included multiple-echo gradient-recalled echo MRI and diffusion-weighted MRI with 3 b values (0, 400, and 800 s/mm2). Variables (body weight and the HFF and ADC in selected regions of interest in the liver parenchyma) were compared between time points by Wilcoxon paired-sample tests. Relationships among variables were assessed with generalized mixed-effects models. RESULTS Median body weight was 4.5 and 6.5 kg, mean ± SD HFF was 3.39 ± 0.89% and 5.37 ± 1.92%, and mean ± SD hepatic ADC was 1.21 ± 0.08 × 10-3 mm2/s and 1.01 ± 0.2 × 10-3 mm2/s at times 0 and 1, respectively. Significant differences between time points were found for body weight, HFF, and ADC. The HFF was positively associated with body weight and ADC was negatively associated with HFF. CONCLUSIONS AND CLINICAL RELEVANCE Similar to findings in people, cats had decreasing hepatic ADC as HFF increased. Protons associated with fat tissue in the liver may reduce diffusivity, resulting in a lower ADC than in liver with lower HFF. Longer studies and evaluation of cats with different nutritional states are necessary to further investigate these findings.
Collapse
|
15
|
Granata V, Fusco R, Risi C, Ottaiano A, Avallone A, De Stefano A, Grimm R, Grassi R, Brunese L, Izzo F, Petrillo A. Diffusion-Weighted MRI and Diffusion Kurtosis Imaging to Detect RAS Mutation in Colorectal Liver Metastasis. Cancers (Basel) 2020; 12:cancers12092420. [PMID: 32858990 PMCID: PMC7565693 DOI: 10.3390/cancers12092420] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Imaging derived parameters can provide data on tumor phenotype as well as cancer microenvironment. Radiomics has recently shown potential in realizing personalized medicine. The aim of the manuscript is to detect RAS mutation in colorectal liver metastasis by Diffusion-Weighted Magnetic Resonance Imaging (DWI-MRI) - and Diffusion Kurtosis imaging (DKI)-derived parameters. We demonstrated that DKI derived parameters allows to detect RAS mutation in liver metastasis. Abstract Objectives: To detect RAS mutation in colorectal liver metastasis by Diffusion-Weighted Magnetic Resonance Imaging (DWI-MRI) - and Diffusion Kurtosis imaging (DKI)-derived parameters. Methods: In total, 106 liver metastasis (60 metastases with RAS mutation) in 52 patients were included in this retrospective study. Diffusion and perfusion parameters were derived by DWI (apparent diffusion coefficient (ADC), basal signal (S0), pseudo-diffusion coefficient (DP), perfusion fraction (FP) and tissue diffusivity (DT)) and DKI data (mean of diffusion coefficient (MD) and mean of diffusional Kurtosis (MK)). Wilcoxon–Mann–Whitney U tests for non-parametric variables and receiver operating characteristic (ROC) analyses were calculated with area under ROC curve (AUC). Moreover, pattern recognition approaches (linear classifier, support vector machine, k-nearest neighbours, decision tree), with features selection methods and a leave-one-out cross validation approach, were considered. Results: A significant discrimination between the group with RAS mutation and the group without RAS mutation was obtained by the standard deviation value of MK (MK STD), by the mean value of MD, and by that of FP. The best results were reached by MK STD with an AUC of 0.80 (sensitivity of 72%, specificity of 85%, accuracy of 79%) using a cut-off of 203.90 × 10−3, and by the mean value of MD with AUC of 0.80 (sensitivity of 84%, specificity of 73%, accuracy of 77%) using a cut-off of 1694.30 mm2/s × 10−6. Considering all extracted features or the predictors obtained by the features selection method (the mean value of S0, the standard deviation value of MK, FP and of DT), the tested pattern recognition approaches did not determine an increase in diagnostic accuracy to detect RAS mutation (AUC of 0.73 and 0.69, respectively). Conclusions: Diffusion-Weighted imaging and Diffusion Kurtosis imaging could be used to detect the RAS mutation in liver metastasis. The standard deviation value of MK and the mean value of MD were the more accurate parameters in the RAS mutation detection, with an AUC of 0.80.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (V.G.); (A.P.)
| | - Roberta Fusco
- Radiology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (V.G.); (A.P.)
- Correspondence: ; Tel.: +39-0815-90714; Fax: 39-0815-903825
| | - Chiara Risi
- Radiology Division, Universita’ Degli Studi Di Napoli Federico II, 80131 Naples, Italy;
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (A.O.); (A.A.); (A.D.S.)
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (A.O.); (A.A.); (A.D.S.)
| | - Alfonso De Stefano
- Abdominal Oncology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (A.O.); (A.A.); (A.D.S.)
| | - Robert Grimm
- Siemens Healthcare GmbH, 91052 Erlangen, Germany;
| | - Roberta Grassi
- Radiology Division, Universita’ Degli Studi Della Campania Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy;
| | - Luca Brunese
- Rector of the Universita’ Degli Studi Del Molise, 86100 Molise, Italy;
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, Napoli, Italia, Via Mariano Semmola, 80131 Naples, Italy; (V.G.); (A.P.)
| |
Collapse
|
16
|
Yoon H, Shin HJ, Kim MJ, Lee MJ. Quantitative Imaging in Pediatric Hepatobiliary Disease. Korean J Radiol 2020; 20:1342-1357. [PMID: 31464113 PMCID: PMC6715564 DOI: 10.3348/kjr.2019.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Pediatric hepatobiliary imaging is important for evaluation of not only congenital or structural disease but also metabolic or diffuse parenchymal disease and tumors. A variety of ultrasonography and magnetic resonance imaging (MRI) techniques can be used for these assessments. In ultrasonography, conventional ultrasound imaging as well as vascular imaging, elastography, and contrast-enhanced ultrasonography can be used, while in MRI, fat quantification, T2/T2* mapping, diffusion-weighted imaging, magnetic resonance elastography, and dynamic contrast-enhanced MRI can be performed. These techniques may be helpful for evaluation of biliary atresia, hepatic fibrosis, nonalcoholic fatty liver disease, sinusoidal obstruction syndrome, and hepatic masses in children. In this review, we discuss each tool in the context of management of hepatobiliary disease in children, and cover various imaging techniques in the context of the relevant physics and their clinical applications for patient care.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Joo Shin
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Joon Kim
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jung Lee
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Liver Imaging Reporting and Data System Version 2018: What Radiologists Need to Know. J Comput Assist Tomogr 2020; 44:168-177. [PMID: 32195795 DOI: 10.1097/rct.0000000000000995] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we aim to review Liver Imaging Reporting and Data System version 18 (LI-RADS v2018). Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy. Liver Imaging Reporting and Data System developed for standardizing interpreting, reporting, and data collection of HCC describes 5 major features for accurate HCC diagnosis and several ancillary features, some favoring HCC in particular or malignancy in general and others favoring benignity. Untreated hepatic lesions LI-RADS affords 8 unique categories based on imaging appearance on computed tomography and magnetic resonance imaging, which indicate the possibility of HCC or malignancy with or without tumor in vein. Furthermore, LI-RADS defines 4 treatment response categories for treated HCCs after different locoregional therapy. These continuous recent updates on LI-RADS improve the communication between the radiologists and the clinicians for better management and patient outcome.
Collapse
|
18
|
The diagnostic value of diffusion-weighted imaging in differentiating benign from malignant hepatic lesions. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-0020-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Diffusion-weighted imaging (DWI) is a novel imaging technique with growing application in onco-imaging. This modality evaluates the diffusion of water molecules in various tissues, which is restricted in hyper cellular regions such as malignant tissue. Apparent diffusion co-efficient (ADC) is a method which can quantify the degree of restriction in tissues and can have diagnostic roles in characterization of hepatic lesions. In this study, 93 patients with proven hepatic lesions were included. These patients had undergone initial evaluation via ultrasonography and dynamic CT scan, and had a definite diagnosis confirmed by biopsy. These patients underwent DW imaging and ADC values of their lesions were calculated. Patients were divided into two groups, benign and malignant groups, based on their biopsy results; and ADC values of hepatic lesions were compared in the two groups.
Results
The two groups were gender matched. There was a significant difference in the age distribution between the two groups. Mean ADC values for benign and malignant hepatic lesions were 1.58 ± 0.35 (10-3 mm2/s) and 0.87 ± 0.16 (10-3 mm2/s), respectively. There was a statistically significant differences between benign and malignant hepatic lesions (p value < 10-3). DW imaging had a sensitivity of 97.6% and specificity of 98.7% in detecting malignant hepatic lesions from benign ones (p = 0.0001, AUC = 0.99).
Conclusion
DW MRI imaging can differentiate malignant and benign liver lesions with high sensitivity and specificity using ADC values generated; furthermore, each subgroup of hepatic lesions could be determined based on ADC values.
Collapse
|
19
|
Mehana SM. Assessment of the follow-up interval changes of the less than 2 cm arterial phase enhancing hepatic nodules in correlation with Liver Imaging Reporting and Data System (LI-RADS) classification version 18 using contrast-enhanced multidetector computed tomography. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0068-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Hu S, Sun C, Wang B, Zhou K, Pan L, Shangguan J, Yang J, Yaghmai V, Figini M, Zhang Z. Diffusion-Weighted MR Imaging to Evaluate Immediate Response to Irreversible Electroporation in a Rabbit VX2 Liver Tumor Model. J Vasc Interv Radiol 2019; 30:1863-1869. [PMID: 31542271 DOI: 10.1016/j.jvir.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To evaluate the feasibility of diffusion-weighted imaging (DWI) in magnetic resonance imaging for quantitative measurement of responses following irreversible electroporation (IRE) in a rabbit liver tumor model. MATERIALS AND METHODS Twelve rabbits underwent ultrasound-guided VX2 tumor implantation in the left medial and left lateral liver lobes. The tumors in the left medial lobe were treated with IRE, whereas those in the left lateral lobe served as internal controls. DWI was performed before and immediately after IRE. Tumors were then harvested for histopathologic staining. The apparent diffusion coefficient (ADC) and change in ADC (ΔADC) were calculated based on DWI. Tumor apoptosis index (AI) was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling. These measurements from DWI and histopathology were compared between untreated and treated tumors. RESULTS The ADC values, ΔADC, and AI showed statistically significant differences between treated and untreated tumors (P < .05 for all). ADC values were higher in treated tumors than in untreated tumors (1.08 × 10-3 mm2/s ± 0.15 vs 0.88 × 10-3 mm2/s ± 0.19; P = .042). CONCLUSIONS DWI can be used to quantitatively evaluate treatment response in liver tumors immediately after IRE.
Collapse
Affiliation(s)
- Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611
| | - Chong Sun
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611; Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Kang Zhou
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611; Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611; Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave., 16th Floor, Chicago, IL 60611; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
21
|
Cao L, Chen J, Duan T, Wang M, Jiang H, Wei Y, Xia C, Zhou X, Yan X, Song B. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg 2019; 9:590-602. [PMID: 31143650 PMCID: PMC6511714 DOI: 10.21037/qims.2019.02.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to prospectively evaluate the diagnostic efficacy of diffusion kurtosis imaging (DKI) in predicting microvascular invasion (MVI) and histologic grade of hepatocellular carcinoma (HCC) with comparison to the conventional diffusion-weighted imaging (DWI). METHODS This prospective study was approved by the Institutional Review Board, and written informed consent was obtained from all patients. From September 2015 to January 2017, 74 consecutive HCC patients were enrolled in this study. Preoperative magnetic resonance imaging including DKI protocol was performed, and patients were followed up for at least one year after surgery. Diffusion parameters including the mean corrected apparent diffusion coefficient (MD), mean apparent kurtosis coefficient (MK), and apparent diffusion coefficient (ADC) were calculated. Differences of diffusion parameters among different histopathological groups were compared. For parameters that were significantly different between pathological groups, receiver operating characteristics (ROC) curve analyses were performed to evaluate the diagnostic efficiency for identifying MVI and predicting high-grade HCC. Univariate and multivariate logistic regression analyses were used to evaluate the relative value of clinical and laboratory variables and diffusion parameters as risk factors for early recurrence (≤1 year). RESULTS Among all the studied diffusion parameters, only MK differed significantly between the MVI-positive and MVI-negative group (0.91±0.10 vs. 0.82±0.09, P<0.001), and showed moderate diagnostic efficacy (AUC =0.77) for identifying MVI. High-grade HCCs showed significantly higher MK values (0.93±0.10 vs. 0.82±0.09, P<0.001), along with MD (1.34±0.18 vs. 1.54±0.22, P<0.001) and ADC values (1.17±0.15 vs. 1.30±0.16, P=0.001) than low-grade HCCs. For differentiating high-grade from low-grade HCCs, MK demonstrated a higher area under the ROC curve (AUC) and significantly higher specificity than MD and ADC (AUC =0.81 vs. 0.76 and 0.74; specificity =82.2% vs. 60.0% and 60.0%, P=0.02). In addition, higher MK (OR =5.700, P=0.002) and Barcelona Clinic Liver Cancer (BCLC) stage C (OR =6.329, P=0.005) were independent risk factors for early HCC recurrence. CONCLUSIONS DKI-derived MK values outperformed conventional ADC values for predicting MVI and histologic grade of HCC, and are associated with increased risk of early tumor recurrence.
Collapse
Affiliation(s)
- Likun Cao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ting Duan
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Wang
- Department of Radiology, Inner Mongolia People’s Hospital, Hohhot 010017, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Wei
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | | | - Xu Yan
- Siemens Healthcare Ltd., Shanghai 201318, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Albrecht J, Polenz D, Kühl AA, Rogasch JMM, Leder A, Sauer IM, Babos M, Mócsai G, Beindorff N, Steffen IG, Brenner W, Koziolek EJ. Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats. EJNMMI Res 2019; 9:21. [PMID: 30796555 PMCID: PMC6386759 DOI: 10.1186/s13550-019-0489-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1 Tesla PET/MRI scanners. We aimed to establish such DWI protocol with focus on the choice of b values, suitable for longitudinal monitoring of tumor characteristics in a rat liver tumor model. Material and methods DWI was first performed in 18 healthy rat livers using the scanner-dependent maximum of 4 b values (0, 100, 200, 300 s/mm2). Apparent diffusion coefficients (ADC) were calculated from different b value combinations and compared to the reference measurement with four b values. T2-weighted MRI and optimized DWI with best agreement between accuracy, scanning time, and system performance stability were used to monitor orthotopic hepatocellular carcinomas (HCC) in five rats of which three underwent additional 2-deoxy-2-(18F)fluoro-d-glucose(FDG)-PET imaging. ADCs were calculated for the tumor and the surrounding liver parenchyma and verified by histopathological analysis. Results Compared to the reference measurements, the combination b = 0, 200, 300 s/mm2 showed the highest correlation coefficient (rs = 0.92) and agreement while reducing the acquisition time. However, measurements with less than four b values yielded significantly higher ADCs (p < 0.001). When monitoring the HCC, an expected drop of the ADC was observed over time. These findings were paralleled by FDG-PET showing both an increase in tumor size and uptake heterogeneity. Interestingly, surrounding liver parenchyma also showed a change in ADC values revealing varying levels of inflammation by immunohistochemistry. Conclusion We established a respiratory-gated DWI protocol for a preclinical 1 T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results. Electronic supplementary material The online version of this article (10.1186/s13550-019-0489-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jakob Albrecht
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Dietrich Polenz
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin - Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Core Unit, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Annekatrin Leder
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Magor Babos
- Mediso Medical Imaging Systems, Laborc utca 3, Budapest, 1037, Hungary
| | - Gabor Mócsai
- Mediso Medical Imaging Systems, Laborc utca 3, Budapest, 1037, Hungary
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Südstraße 3, 13353, Berlin, Germany
| | - Ingo G Steffen
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Südstraße 3, 13353, Berlin, Germany
| | - Eva J Koziolek
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|