1
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 PMCID: PMC12059806 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Shafie D, Abhari AP, Fakhrolmobasheri M. Relative Values of Hematological Indices for Prognosis of Heart Failure: A Mini-Review. Cardiol Rev 2024; 32:558-565. [PMID: 36946981 DOI: 10.1097/crd.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Owing to the augmented perception of heart failure (HF) pathophysiology, management of the affected patients has been improved dramatically; as with the identification of the inflammatory background of HF, new avenues of HF prognosis research have been opened up. In this regard, relative values of hematologic indices were demonstrated by a growing body of evidence to successfully predict HF outcomes. Cost-effectiveness, accessibility, and easy obtainability of these relative values make them a precious option for the determination of HF prognosis; particularly in low-income developing countries. In this short review, we aimed to present the current literature on the predictability of these hematologic parameters for HF outcomes.
Collapse
Affiliation(s)
- Davood Shafie
- From the Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
3
|
Olumuyide E, Agwuegbo CC, Ahmed EN. Exploring the Heart Failure Connection in Long COVID Patients: A Narrative Review. Cureus 2024; 16:e58694. [PMID: 38774167 PMCID: PMC11108637 DOI: 10.7759/cureus.58694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/24/2024] Open
Abstract
In this narrative review, we explore the relationship between long COVID patients and their risk of developing heart failure (HF). Patients with long COVID face a heightened risk of HF, a critical cardiovascular complication linked to the prolonged effects of COVID-19. Clinical manifestations of long COVID-associated HF present diagnostic challenges, complicating patient management. Multidisciplinary care is essential to address these complexities effectively. We found that long COVID can result in various cardiovascular issues including HF. The current view is long COVID leads to HF by activating systemic inflammation by causing endothelial dysfunction, which leads to activation of the complement pathways, tissue factor pathways, and Von Willebrand factor; activation of all these factors leads to venous and arterial thrombosis, which could lead to clogging of blood vessel of the heart leading to cardiovascular complications. The association between long COVID and HF can be challenging despite being recognized as comorbidity because biomarkers are not dependable in determining whether a patient had HF before or after contracting COVID-19. Emerging therapeutic modalities offer hope for improving outcomes, but further research is needed to refine management strategies and mitigate long-term cardiovascular consequences of COVID-19.
Collapse
Affiliation(s)
- Emmanuel Olumuyide
- Internal Medicine, Advocate Illinois Masonic Medical Center, Chicago, USA
| | | | - Eman N Ahmed
- Internal Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| |
Collapse
|
4
|
Yuan H, Zhang P, Xin Y, Liu Z, Gao B. Single cell RNA-seq identifies a FOS/JUN-related monocyte signature associated with clinical response of heart failure patients with mesenchymal stem cell therapy. Aging (Albany NY) 2024; 16:5651-5675. [PMID: 38517374 PMCID: PMC11006470 DOI: 10.18632/aging.205670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Heart failure (HF) is a serious global health issue that demands innovative treatment approaches. In this study, we collected samples from 4 HF patients before and after MSC therapy and performed scRNA-seq. After the MSC therapy, the proportion of CD14+ monocytes decreased significantly in both the treatment response and non-response groups, with a more pronounced decrease in the treatment response group. The therapy-response and non-response group were clearly separated in the UMAP plot, while the CD14+ monocytes in the therapy-response group before and after MSC therapy were very similar, but there were significant differences in the non-response group. By further performing NMF analysis, we identified 11 subsets of CD14+ monocytes. More importantly, we identified a therapy-related CD14+ monocyte subpopulation. The predictive model based on CD14+ monocytes constructed by machine learning algorithms showed good performance. Moreover, genes such as FOS were highly enriched in the therapy-related CD14+ monocytes. The SCENIC analysis revealed potential regulatory factors for this treatment-responsive CD14+ monocytes, and FOS/JUN were identified as potential core indicators/regulators. Finally, HF patients were divided into three groups by NMF analysis, and the therapy-responsive CD14+ monocyte characteristics were differentially activated among the three groups. Together, this study identifies treatment-responsive CD14+ monocytes as a crucial biomarker for assessing the suitability of MSC therapy and determining which HF patients could benefit from it. This provides new clues for further investigating the therapeutic mechanisms of MSC therapy, offering beneficial insights for personalized treatment and improving prognosis in HF patients.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengfei Zhang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanfeng Xin
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhongmin Liu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
- Cardiopulmonary Vascular Center, Haikang Hospital, Xingguang Island, West Coast New Area, Qingdao 266400, Shandong, China
| |
Collapse
|
5
|
Eftekhar Z, Haybar H, Mohebbi A, Saki N. Cardiac Complications and COVID-19: A Review of Life-threatening Co-morbidities. Curr Cardiol Rev 2024; 20:1-12. [PMID: 38415433 PMCID: PMC11284692 DOI: 10.2174/011573403x279782240206091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The novel 2019 coronavirus disease (COVID-19) was first reported in the last days of December 2019 in Wuhan, China. The presence of certain co-morbidities, including cardiovascular diseases (CVDs), are the basis for worse outcomes in patients with COVID-19. Relevant English-language literature was searched and retrieved from the Google Scholar search engine and PubMed database up to 2023 using COVID-19, SARS-CoV-2, Heart failure, Myocardial infarction, and Arrhythmia and Cardiac complication as keywords. Increased hemodynamic load, ischemia-related dysfunction, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, and excessive or insufficient extracellular matrix proliferation are associated with heart failure (HF) in COVID-19 patients. Inflammatory reaction due to the excessive release of inflammatory cytokines, leads to myocardial infarction (MI) in these patients. The virus can induce heart arrhythmia through cardiac complications, hypoxia, decreased heart hemodynamics, and remarkable inflammatory markers. Moreover, studies have linked cardiac complications in COVID-19 with poor outcomes, extended hospitalization time, and increased mortality rate. Patients with COVID-19 and CVDs are at higher mortality risk and they should be given high priority when receiving the treatment and intensive care during hospitalization.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Zhu H, Li Y, Su H, Yan C, Xin W, Ying K. What Is the Impact of Baseline Inflammatory and Hemostatic Indicators with the Risk of Mortality in Severe Inpatients with COVID-19: A Retrospective Study. Clin Appl Thromb Hemost 2024; 30:10760296241255959. [PMID: 38831596 DOI: 10.1177/10760296241255959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The purpose of the study was to investigate baseline inflammatory, hemostatic indicators and new-onset deep vein thrombosis (DVT) with the risk of mortality in COVID-19 inpatients. In this single-center study, a total of 401 COVID-19 patients hospitalized in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine were enrolled from December 1, 2022 to January 31, 2023. The basic information, first laboratory examination results, imaging examination, and outcome-related indicators were compared between patients in the moderate and severe subgroups. We found that baseline D-dimer and baseline absolute neutrophil count (ANC) levels were associated with new-onset DVT and death in severe hospitalized patients with COVID-19. The odds ratio (OR) of baseline D-dimer and baseline ANC with mortality was 1.18 (95% confidence interval [CI], 1.08-1.28; P < .001) and 1.13 (95% CI, 1.06-1.21; P < .001). Baseline ANC was associated with the risk of death in severe hospitalized COVID-19 patients, irrespective of the DVT status. In addition, a significantly higher serum neutrophil activity was observed in severe COVID-19 inpatients with DVT or those deceased during hospital stay. New-onset DVT partially mediated the association between baseline D-dimer (indirect effect: 0.011, estimated mediating proportion: 67.0%), baseline ANC (indirect effect: 0.006, estimated mediating proportion: 48.7%), and mortality in severe hospitalized patients with COVID-19. In summary, baseline D-dimer and baseline absolute neutrophil count (ANC) levels were associated with the mortality in severe hospitalized patients with COVID-19, especially DVT inpatients. New-onset DVT partially mediated the association between baseline D-dimer, baseline ANC, and mortality in severe hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Huiqi Zhu
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yeping Li
- Department of Respiratory and Critical Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Hua Su
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Yan
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wanghao Xin
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Thoppil J, Mehta P, Bartels B, Sharma D, Farrar JD. Impact of norepinephrine on immunity and oxidative metabolism in sepsis. Front Immunol 2023; 14:1271098. [PMID: 38022663 PMCID: PMC10662053 DOI: 10.3389/fimmu.2023.1271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a major health problem in the United States (US), constituting a leading contributor to mortality among critically ill patients. Despite advances in treatment the underlying pathophysiology of sepsis remains elusive. Reactive oxygen species (ROS) have a significant role in antimicrobial host defense and inflammation and its dysregulation leads to maladaptive responses because of excessive inflammation. There is growing evidence for crosstalk between the central nervous system and the immune system in response to infection. The hypothalamic-pituitary and adrenal axis and the sympathetic nervous system are the two major pathways that mediate this interaction. Epinephrine (Epi) and norepinephrine (NE), respectively are the effectors of these interactions. Upon stimulation, NE is released from sympathetic nerve terminals locally within lymphoid organs and activate adrenoreceptors expressed on immune cells. Similarly, epinephrine secreted from the adrenal gland which is released systemically also exerts influence on immune cells. However, understanding the specific impact of neuroimmunity is still in its infancy. In this review, we focus on the sympathetic nervous system, specifically the role the neurotransmitter norepinephrine has on immune cells. Norepinephrine has been shown to modulate immune cell responses leading to increased anti-inflammatory and blunting of pro-inflammatory effects. Furthermore, there is evidence to suggest that norepinephrine is involved in regulating oxidative metabolism in immune cells. This review attempts to summarize the known effects of norepinephrine on immune cell response and oxidative metabolism in response to infection.
Collapse
Affiliation(s)
- Joby Thoppil
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Prayag Mehta
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Brett Bartels
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Drashya Sharma
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - J. David Farrar
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
9
|
Fan L, Ding X. Potential Effects of Traditional Chinese Medicine on COVID-19 and Cardiac Injury: Mechanisms and Clinical Evidence. J Multidiscip Healthc 2023; 16:2863-2872. [PMID: 37771609 PMCID: PMC10522495 DOI: 10.2147/jmdh.s424078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Coronavirus disease 2019 is a "Public Health Emergency of International Concern" from 30 January 2020 to 5 May 2023. While battling Coronavirus disease 2019, the Chinese government has actively promoted the collaborative treatment model of Western medicine and traditional Chinese medicine, and clinical and scientific research has applied appropriate and rigorous methodology. Severe acute respiratory syndrome coronavirus 2 infection may damage the cardiovascular system via an unclarified pathogenic mechanism. The National Health Commission of China recommends 'three formulas and three medicines' for the treatment of coronavirus disease 2019, which have been shown to be most effective in the treatments. Data from randomized controlled trials of 'three formulas and three medicines' suggested that the traditional Chinese medicine is safe and can alleviate the symptoms of cardiac injury. Therefore, we further evaluate the benefits and safety of traditional Chinese medicine treatment for Coronavirus disease 2019 patients with cardiac injury across the care continuum.
Collapse
Affiliation(s)
- Leilei Fan
- Department of Cardiovascular, Yellow River Central Hospital, Zhengzhou, 450004, People’s Republic of China
| | - Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| |
Collapse
|
10
|
Zhou S, Zhang A, Liao H, Liu Z, Yang F. Pathological Interplay and Clinical Complications between COVID-19 and Cardiovascular Diseases: An Overview in 2023. Cardiology 2023; 149:60-70. [PMID: 37586358 PMCID: PMC11251668 DOI: 10.1159/000533359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) involves all organs of the body, of which the interaction with cardiovascular diseases is the most important. SUMMARY Numerous studies have reported that COVID-19 patients complicated with cardiovascular comorbidities (hypertension, coronary heart disease, chronic heart failure (HF), cerebrovascular disease) are more likely to develop into critical illness and have higher mortality. Conversely, COVID-19 may also cause myocardial injury in patients through various pathological mechanisms such as direct virus attack on cardiomyocytes, overactivation of immune response, microthrombus formation, which may lead to fatal acute ST-segment elevation myocardial infarction, arrhythmia, acute worsening of chronic HF, etc. In addition, the symptoms of the so-called long-COVID may remain in some patients who survived the acute viral infection. Positional tachycardia has been widely reported, and cardiovascular autonomic disorders are thought to play a pathogenic role. KEY MESSAGE The review summarizes the interaction between COVID-19 and cardiovascular disease in terms of pathological mechanism, clinical features, and sequelae. Therapeutic and rehabilitation programs after COVID-19 infection are compiled and need to be further standardized in the future.
Collapse
Affiliation(s)
- Sufeng Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anchen Zhang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Liao
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyan Yang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Zhou W, Chen Z, Fang Z, Xu D. Network analysis for elucidating the mechanisms of Shenfu injection in preventing and treating COVID-19 combined with heart failure. Comput Biol Med 2022; 148:105845. [PMID: 35849948 PMCID: PMC9279168 DOI: 10.1016/j.compbiomed.2022.105845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The emergence of the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to millions of infections and is exerting an unprecedented impact on society and economies worldwide. The evidence showed that heart failure (HF) is a clinical syndrome that could be encountered at different stages during the progression of COVID-19. Shenfu injection (SFI), a traditional Chinese medicine (TCM) formula has been widely used for heart failure therapy in China and was suggested to treat critical COVID-19 cases based on the guideline for diagnosis and treatment of COVID-19 (the 7th version) issued by National Health Commission of the People's Republic of China. However, the active components, potential targets, related pathways, and underlying pharmacology mechanism of SFI against COVID-19 combined with HF remain vague. OBJECTIVE To investigate the effectiveness and possible pharmacological mechanism of SFI for the prevention and treatment of COVID-19 combined with HF. METHODS In the current study, a network analysis approach integrating active compound screening (drug-likeness, lipophilicity, and aqueous solubility models), target fishing (Traditional Chinese Medicine Systems Pharmacology, fingerprint-based Similarity Ensemble Approach, and PharmMapper databases), compound-target-disease network construction (Cytoscape software), protein-protein interaction network construction (STRING and Cytoscape software), biological process analysis (STRING and Cytoscape plug-in Clue GO) and pathway analysis (Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis) was developed to decipher the active ingredients, potential targets, relevant pathways, and the therapeutic mechanisms of SFI for preventing and treating COVID-19 combined with HF. RESULTS Finally, 20 active compounds (DL ≥ 0.18, 1≤Alog P ≤ 5, and -5≤LogS ≤ -1) and 164 relevant targets of SFI were identified related to the development of COVID-19 combined with HF, which were mainly involved in three biological processes including metabolic, hemostasis, and cytokine signaling in immune system. The C-T-D network and reactome pathway analysis indicated that SFI probably regulated the pathological processes of heart failure, respiratory failure, lung injury, and inflammatory response in patients with COVID-19 combined with HF through acting on several targets and pathways. Moreover, the venn diagram was used to identify 54 overlapped targets of SFI, COVID-19, and HF. KEGG pathway enrichment analysis showed that 54 overlapped targets were highly enriched to several COVID-19 and HF related pathways, such as IL-17 signaling pathway, Th17 cell differentiation, and NF-kappa B signaling pathway. CONCLUSIONS A comprehensive network analysis approach framework was developed to systematically elucidate the potential pharmacological mechanism of SFI for the prevention and treatment of SFI against COVID-19 combined with HF. The current study may not only provide in-depth understanding of the pharmacological mechanisms of SFI, but also a scientific basis for the application of SFI against COVID-19 combined with HF.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China
| | - Zhangfu Fang
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| |
Collapse
|
12
|
Ng TMH, Oh EE, Bae-Shaaw YH, Minejima E, Joyce G. Acute Bacterial Infections and Longitudinal Risk of Readmissions and Mortality in Patients Hospitalized with Heart Failure. J Clin Med 2022; 11:740. [PMID: 35160192 PMCID: PMC8836984 DOI: 10.3390/jcm11030740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
AIMS Infections are associated with worse short-term outcomes in patients with heart failure (HF). However, acute infections may have lasting pathophysiologic effects that adversely influence HF outcomes after discharge. Our objective was to describe the impact of acute bacterial infections on longitudinal outcomes of patients hospitalized with a primary diagnosis of HF. METHODS AND RESULTS This paper is based on a retrospective cohort study of patients hospitalized with a primary diagnosis of HF with or without a secondary diagnosis of acute bacterial infection in Optum Clinformatics DataMart from 2010-2015. Primary outcomes were 30 and 180-day hospital readmissions and mortality, intensive care unit admission, length of hospital stay, and total hospital charge, compared between those with or without an acute infection. Cohorts were compared after inverse probability of treatment weighting. Multivariable logistic regression was used to examine relationship to outcomes. Of 121,783 patients hospitalized with a primary diagnosis of HF, 27,947 (23%) had a diagnosis of acute infection. After weighting, 30-day hospital readmissions [17.1% vs. 15.7%, OR 1.11 (1.07-1.15), p < 0.001] and 180-day hospital readmissions [39.6% vs. 38.7%, OR 1.04 (1.01-1.07), p = 0.006] were modestly greater in those with an acute infection versus those without. Thirty-day [5.5% vs. 4.3%, OR 1.29 (1.21-1.38), p < 0.001] and 180-day mortality [10.7% vs. 9.4%, OR 1.16 (1.11-1.22), p < 0.001], length of stay (7.1 ± 7.0 days vs. 5.7 ± 5.8 days, p < 0.001), and total hospital charges (USD 62,200 ± 770 vs. USD 51,100 ± 436, p < 0.001) were higher in patients with an infection. CONCLUSIONS The development of an acute bacterial infection in patients hospitalized for HF was associated with an increase in morbidity and mortality after discharge.
Collapse
Affiliation(s)
- Tien M. H. Ng
- Department of Clinical Pharmacy and Medicine, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Esther E. Oh
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA; (E.E.O.); (E.M.)
| | - Yuna H. Bae-Shaaw
- Department of Pharmaceutical and Health Economics, University of Southern California, Los Angeles, CA 90089-9121, USA; (Y.H.B.-S.); (G.J.)
| | - Emi Minejima
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA; (E.E.O.); (E.M.)
| | - Geoffrey Joyce
- Department of Pharmaceutical and Health Economics, University of Southern California, Los Angeles, CA 90089-9121, USA; (Y.H.B.-S.); (G.J.)
| |
Collapse
|
13
|
Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front Physiol 2021; 12:746494. [PMID: 34707513 PMCID: PMC8543018 DOI: 10.3389/fphys.2021.746494] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammation has been recognized as a major pathophysiological contributor to the entire spectrum of human heart failure (HF), including HF with reduced ejection fraction, HF with preserved ejection fraction, acute HF and cardiogenic shock. Nevertheless, the results of several trials attempting anti-inflammatory strategies in HF patients have not been consistent or motivating and the clinical implementation of anti-inflammatory treatments for HF still requires larger and longer trials, as well as novel and/or more specific drugs. The present work reviews the different inflammatory mechanisms contributing to each type of HF, the major inflammatory mediators involved, namely tumor necrosis factor alpha, the interleukins 1, 6, 8, 10, 18, and 33, C-reactive protein and the enzymes myeloperoxidase and inducible nitric oxide synthase, and their effects on heart function. Furthermore, several trials targeting these mediators or involving other anti-inflammatory treatments in human HF are also described and analyzed. Future therapeutic advances will likely involve tailored anti-inflammatory treatments according to the patient's inflammatory profile, as well as the development of resolution pharmacology aimed at stimulating resolution of inflammation pathways in HF.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
- Departamento de Medicina Intensiva, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina – Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| |
Collapse
|
14
|
Sathianathan S, Bhat G, Dowling R. Vasoplegia from Continuous Flow Left Ventricular Assist Devices. Curr Cardiol Rep 2021; 23:101. [PMID: 34196837 DOI: 10.1007/s11886-021-01534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The contribution of continuous flow left ventricular assist devices (c-LVAD) to vasoplegic syndrome and postoperative outcomes after orthotopic heart transplant (OHT) is contested in the literature. A standardized definition of vasoplegic syndrome (VS) is needed to better recognize and manage vasoplegic shock. RECENT FINDINGS Vasoplegic syndrome occurs after orthotopic heart transplant more frequently than after other surgeries requiring cardiopulmonary bypass. c-LVADs lead to small vessel endothelial dysfunction and desensitized adrenal receptors; however, their contribution to the development of vasoplegia is debated in clinical studies. Pulsatility may mitigate vascular dysfunction resulting from long-term continuous flow, and should be further explored in the clinical setting when considering risk factors for vasoplegic syndrome. The incidence of vasoplegic syndrome after orthotopic heart transplant is rising with the increasing use of c-LVAD bridge to therapy. Robust clinical studies are needed to advance our understanding and approach to mitigating VS after OHT.
Collapse
Affiliation(s)
- Shyama Sathianathan
- School of Medicine, Penn State College of Medicine, 500 University Dr, Hershey, PA, 17033, USA.
| | - Geetha Bhat
- Heart and Vascular Institute, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Robert Dowling
- Heart and Vascular Institute, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
15
|
Yalta K, Yetkin E, Yalta T. Systemic inflammation in patients with Takotsubo syndrome: a review of mechanistic and clinical implications. Monaldi Arch Chest Dis 2021; 91. [PMID: 33728882 DOI: 10.4081/monaldi.2021.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/10/2021] [Indexed: 11/23/2022] Open
Abstract
Over recent decades, systemic inflammation as quantified with inflammation markers or indices has been extensively investigated in the setting of various cardiovascular conditions including heart failure (HF), acute coronary syndromes (ACS). In contrast, systemic inflammation in patients with takotsubo syndrome (TTS) has been an underrated phenomenon in clinical practice. On the other hand, experimental and clinical data have been rapidly accumulating in the recent years regarding pathogenetic, prognostic as well as therapeutic implications of systemic inflammation in TTS. Accordingly, the present article aims to provide a general perspective on mechanistic and clinical aspects of systemic inflammation in the setting of TTS.
Collapse
Affiliation(s)
- Kenan Yalta
- CardiologyDepartment, Trakya University, Edirne.
| | - Ertan Yetkin
- Cardiology Department, Derindere Hospital, Istanbul.
| | - Tulin Yalta
- Pathology Department, Trakya University, Edirne.
| |
Collapse
|
16
|
Beata S, Michał T, Mateusz O, Urszula W, Choroszy M, Andrzej T, Piotr D. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence 2021; 12:630-637. [PMID: 33538227 PMCID: PMC7872043 DOI: 10.1080/21505594.2021.1882780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Norepinephrine (NE), the stress hormone, stimulates many bacterial species’ growth and virulence, including Escherichia coli. However, the hormone’s impact on the adherent-invasive E. coli (AIEC) implicated in Crohn’s disease is poorly understood. In the study, we have investigated the effect of NE on the interaction of six AIEC strains isolated from an intestinal biopsy from 6 children with Crohn’s disease with Caco-2 cells. Our study focused on type 1 fimbria and CEACAM6 molecules serving as docking sites for these adhesins. The study results demonstrated that the hormone significantly increased the adherence and invasion of AIEC to Caco-2 cells in vitro. However, the effect was not associated with the impact of NE on the increased proliferation rate of AIEC or the fimA gene expression vital for their interaction with intestinal epithelial cells. Instead, the carcinoembryonic antigen-related cell-adhesion-molecule-6 (CEACAM6) level was increased significantly in NE-treated Caco-2 cells infected with AIEC in contrast to control uninfected NE-treated cells. These results indicated that NE influenced the interaction of AIEC with intestinal epithelium by increasing the level of CEACAM6 in epithelial cells, strengthening their adherence and invasion.
Collapse
Affiliation(s)
| | - Turniak Michał
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Olbromski Mateusz
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| | - Walczuk Urszula
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Tukiendorf Andrzej
- Department of Public Health, Wroclaw Medical University , Wroclaw, Poland
| | - Dzięgiel Piotr
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
17
|
Abstract
Heart failure is a common disease state that can be encountered at different stages in the course of a COVID-19 patient presentation. New or existing heart failure in the setting of COVID-19 can present a set of unique challenges that can complicate presentation, management, and prognosis. A careful understanding of the hemodynamic and diagnostic implications is essential for appropriate triage and management of these patients. Abnormal cardiac biomarkers are common in COVID-19 and can stem from a variety of mechanisms that involve the viral entry itself through the ACE2 receptors, direct cardiac injury, increased thrombotic activity, stress cardiomyopathy, and among others. The cytokine storm observed in this pandemic can be a culprit in many of the observed mechanisms and presentations. A correct understanding of the two-way interaction between heart failure medications and the infection as well as the proposed COVID-19 medications and heart failure can result in optimal management. Guideline-directed medical therapy for heart failure should not be interrupted for theoretical concerns but rather based on tolerance and clinical presentation. Initiating specific cardiac or heart failure medications to prevent the infection or mitigate the disease is also not an evidence-based practice at this time. Heart failure patients on advanced therapies including those with heart transplantation will particularly benefit from involving the advanced heart failure team members in the overall management if they contract the virus.
Collapse
Affiliation(s)
- Feras Bader
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Yosef Manla
- Department of Research and Education, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Bassam Atallah
- Department of Pharmacy Services, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Randall C Starling
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Kaufman Center for Heart Failure, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Zhao Y, Yang Z, Fang C, Xiao D, Shi Y, Lin Y, Zhai Q. A single-center observational study on the expression of circulating interleukin-20 levels and predicting outcomes in human chronic heart failure: A 2-year follow-up cohort study. Clin Chim Acta 2020; 510:5-10. [DOI: 10.1016/j.cca.2020.06.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
|
19
|
Shen HX, Lu XJ, Lu JF, Chen J. Beta-adrenergic receptor stimulation influences the function of monocytes/macrophages in ayu (Plecoglossus altivelis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103513. [PMID: 31585194 DOI: 10.1016/j.dci.2019.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Adrenergic receptors (ARs) are members of the G-protein-coupled receptor superfamily that can be categorized into αARs and βARs. The specific function of ARs in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of ARs from ayu (Plecoglossus altivelis; PaαAR and PaβAR). Sequence comparisons showed that PaαAR was most closely related to the αAR of the Japanese flounder and Nile tilapia, while PaβAR was most closely related to the βAR of Atlantic salmon. The AR transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaαAR and PaβAR proteins were upregulated in MO/MФ after infection, and PaβAR knockdown resulted in a pro-inflammatory status in ayu MO/MФ upon V. anguillarum infection and lowered the phagocytic activity of MO/MФ. Our results indicate that PaβAR plays the role of an anti-inflammatory mediator in the immune response of ayu against bacterial infection.
Collapse
Affiliation(s)
- Hong-Xia Shen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jian-Fei Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
van Vessem ME, Beeres SLMA, de Wilde RBP, de Vries R, Berendsen RR, de Jonge E, Danser AHJ, Klautz RJM, Schalij MJ, Palmen M. Vasoresponsiveness in patients with heart failure (VASOR): protocol for a prospective observational study. J Cardiothorac Surg 2019; 14:200. [PMID: 31752946 PMCID: PMC6868831 DOI: 10.1186/s13019-019-1014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Vasoplegia is a severe complication which may occur after cardiac surgery, particularly in patients with heart failure. It is a result of activation of vasodilator pathways, inactivation of vasoconstrictor pathways and the resistance to vasopressors. However, the precise etiology remains unclear. The aim of the Vasoresponsiveness in patients with heart failure (VASOR) study is to objectify and characterize the altered vasoresponsiveness in patients with heart failure, before, during and after heart failure surgery and to identify the etiological factors involved. METHODS This is a prospective, observational study conducted at Leiden University Medical Center. Patients with and patients without heart failure undergoing cardiac surgery on cardiopulmonary bypass are enrolled. The study is divided in two inclusion phases. During phase 1, 18 patients with and 18 patients without heart failure are enrolled. The vascular reactivity in response to a vasoconstrictor (phenylephrine) and a vasodilator (nitroglycerin) is assessed in vivo on different timepoints. The response to phenylephrine is assessed on t1 (before induction), t2 (before induction, after start of cardiotropic drugs and/or vasopressors), t3 (after induction), t4 (15 min after cessation of cardiopulmonary bypass) and t5 (1 day post-operatively). The response to nitroglycerin is assessed on t1 and t5. Furthermore, a sample of pre-pericardial fat tissue, containing resistance arteries, is collected intraoperatively. The ex vivo vascular reactivity is assessed by constructing concentrations response curves to various vasoactive substances using isolated resistance arteries. Next, expression of signaling proteins and receptors is assessed using immunohistochemistry and mRNA analysis. Furthermore, the groups are compared with respect to levels of organic compounds that can influence the cardiovascular system (e.g. copeptin, (nor)epinephrine, ANP, BNP, NTproBNP, angiotensin II, cortisol, aldosterone, renin and VMA levels). During inclusion phase 2, only the ex vivo vascular reactivity test is performed in patients with (N = 12) and without heart failure (N = 12). DISCUSSION Understanding the difference in vascular responsiveness between patients with and without heart failure in detail, might yield therapeutic options or development of preventive strategies for vasoplegia, leading to safer surgical interventions and improvement in outcome. TRIAL REGISTRATION The Netherlands Trial Register (NTR), NTR5647. Registered 26 January 2016.
Collapse
Affiliation(s)
- Marieke E. van Vessem
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
| | - Saskia L. M. A. Beeres
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
| | - Rob B. P. de Wilde
- Department of Intensive Care, Leiden University Medical Center, Leiden, the Netherlands
| | - René de Vries
- Department of Internal medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Remco R. Berendsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Evert de Jonge
- Department of Intensive Care, Leiden University Medical Center, Leiden, the Netherlands
| | - A. H. Jan Danser
- Department of Internal medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert J. M. Klautz
- Department of Cardiothoracic Surgery, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
| | - Martin J. Schalij
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC The Netherlands
| |
Collapse
|
21
|
Dewachter L, Dewachter C. Inflammation in Right Ventricular Failure: Does It Matter? Front Physiol 2018; 9:1056. [PMID: 30177883 PMCID: PMC6109764 DOI: 10.3389/fphys.2018.01056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Right ventricular (RV) failure is a common consequence of acute and chronic RV overload of pressure, such as after pulmonary embolism and pulmonary hypertension. It has been recently realized that symptomatology and survival of patients with pulmonary hypertension are essentially determined by RV function adaptation to increased afterload. Therefore, improvement of RV function and reversal of RV failure are treatment goals. Currently, the pathophysiology and the pathobiology underlying RV failure remain largely unknown. A better understanding of the pathophysiological processes involved in RV failure is needed, as there is no proven treatment for this disease at the moment. The present review aims to summarize the current understanding of the pathogenesis of RV failure, focusing on inflammation. We attempt to formally emphasize the importance of inflammation and associated representative inflammatory molecules and cells in the primum movens and development of RV failure in humans and in experimental models. We present inflammatory biomarkers and immune mediators involved in RV failure. We focus on inflammatory mediators and cells which seem to correlate with the deterioration of RV function and also explain how all these inflammatory mediators and cells might impact RV function adaptation to increased afterload. Finally, we also discuss the evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting of acute and chronic RV failure.
Collapse
Affiliation(s)
- Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasmus Academic Hospital, Brussels, Belgium
| |
Collapse
|
22
|
Liang S, Xinyong C, Hongmin Z, Jing W, Lang H, Ping Z. TLR2 and TLR3 expression as a biomarker for the risk of doxorubicin-induced heart failure. Toxicol Lett 2018; 295:205-211. [PMID: 29959987 DOI: 10.1016/j.toxlet.2018.06.1219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Doxorubicin (Dox) is limited in its use because of its adverse effect of inducing irreversible heart dysfunction. Innate immune factors, including toll-like receptors (TLRs), play important roles in most cardiac diseases and doxorubicin-induced cardiotoxicity. In this study, subjects were divided into the following groups: healthy controls (n = 62), HF group (n = 60), Dox group (n = 82), and Dox-HF group (n = 32). Expressions of TLR mRNAs in peripheral blood mononuclear cells were detected by RT-PCR. Western blotting was used to quantify protein expressions of Peripheral blood mononuclear cells (PBMCs) TLRs and their downstream signal proteins. The release of inflammatory factors was detected by ELISA. Results indicated that TLR2 was increased and TLR3 was decreased between the control group and Dox group, and between the Dox group and Dox-HF group. Serum inflammatory factors were comparable between the HF group, the Dox group, and the Dox-HF group. This study suggested that TLR2 and TLR3 are up- and down-regulated, respectively, in doxorubicin-treated patients who develop heart dysfunctions. This may suggest a predictive role for TLR2-TLR3 imbalance in doxorubicin-induced heart failure.
Collapse
Affiliation(s)
- Shao Liang
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China; Jiang Xi Provincial Institute of Cardiovascular Diseases, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Cai Xinyong
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhu Hongmin
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wang Jing
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Lang
- Department of Cardiology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China; Jiang Xi Provincial Institute of Cardiovascular Diseases, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital, No, 92 Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW With the intention to summarize the currently available evidence on the pathophysiological relevance of inflammation in heart failure, this review addresses the question whether inflammation is a cause or consequence of heart failure, or both. RECENT FINDINGS This review discusses the diversity (sterile, para-inflammation, chronic inflammation) and sources of inflammation and gives an overview of how inflammation (local versus systemic) can trigger heart failure. On the other hand, the review is outlined how heart failure-associated wall stress and signals released by stressed, malfunctioning, or dead cells (DAMPs: e.g., mitochondrial DNA, ATP, S100A8, matricellular proteins) induce cardiac sterile inflammation and how heart failure provokes inflammation in various peripheral tissues in a direct (inflammatory) and indirect (hemodynamic) manner. The crosstalk between the heart and peripheral organs (bone marrow, spleen, gut, adipose tissue) is outlined and the importance of neurohormonal mechanisms including the renin angiotensin aldosteron system and the ß-adrenergic nervous system in inflammation and heart failure is discussed. Inflammation and heart failure are strongly interconnected and mutually reinforce each other. This indicates the difficulty to counteract inflammation and heart failure once this chronic vicious circle has started and points out the need to control the inflammatory process at an early stage avoiding chronic inflammation and heart failure. The diversity of inflammation further addresses the need for a tailored characterization of inflammation enabling differentiation of inflammation and subsequent target-specific strategies. It is expected that the characterization of the systemic and/or cardiac immune profile will be part of precision medicine in the future of cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|