1
|
Kondreddy V, Keshava S, Das K, Magisetty J, Rao LVM, Pendurthi UR. The Gab2-MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood 2022; 140:1549-1564. [PMID: 35895897 PMCID: PMC9523376 DOI: 10.1182/blood.2022016424] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1β (IL-1β) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1β-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1β-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
2
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
3
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
4
|
Bao W, Sun C, Sun X, He M, Yu H, Yan W, Wen F, Zhang L, Yang C. Targeting BCL10 by small peptides for the treatment of B cell lymphoma. Am J Cancer Res 2020; 10:11622-11636. [PMID: 33052237 PMCID: PMC7546004 DOI: 10.7150/thno.47533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies.
Collapse
|
5
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Toll-like receptor 2 activation implicated in oral squamous cell carcinoma development. Biochem Biophys Res Commun 2017; 495:2227-2234. [PMID: 29269299 DOI: 10.1016/j.bbrc.2017.12.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
Abstract
Recent studies have revealed that Toll-like receptors (TLRs) are highly expressed and activated in many types of cancer. Physiologically, TLR2 recognizes bacteria and other microorganisms in the oral cavity; however, the role of TLR2 in oral squamous cell carcinoma (OSCC) is unclear. In this study, we demonstrated that TLR2 is highly expressed in OSCC in comparison with adjacent non-malignant tissue. TLR2 was also expressed in OSCC-derived cell lines, and its expression was activated by ligands derived from bacteria and mycoplasma. Furthermore, to elucidate the mechanism of OSCC progression via TLR2 signal transduction, we focused on microRNAs (miRNAs) that are induced by TLR2 activation. Interestingly, ligand activation of TLR2 induced the expression of miR-146a and we found that downregulation of caspase recruitment domain-containing protein 10 (CARD10) mRNA in OSCC-derived cell lines. Moreover, knockdown of CARD10 induced resistance to cisplatin-induced apoptosis in OSCC cells. These findings suggest that the activation of TLR2 by bacterial components can enhance the progression of OSCC and may be implicated in acquired resistance to cisplatin-induced apoptosis through regulation of the miR-146a pathway.
Collapse
|
7
|
Chang YW, Chiu CF, Lee KY, Hong CC, Wang YY, Cheng CC, Jan YH, Huang MS, Hsiao M, Ma JT, Su JL. CARMA3 Represses Metastasis Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis. Am J Respir Crit Care Med 2015; 192:64-75. [PMID: 25906011 DOI: 10.1164/rccm.201411-1957oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE CARD-recruited membrane-associated protein 3 (CARMA3) is a novel scaffold protein that regulates nuclear factor (NF)-κB activation; however, the underlying mechanism of CARMA3 in lung cancer stemness and metastasis remains largely unknown. OBJECTIVES To investigate the molecular mechanisms underlying the involvement of CARMA3 in non-small cell lung cancer progression. METHODS The expression levels of CARMA3 and NME2 in a cohort of patients with lung cancer (n = 91) were examined by immunohistochemistry staining and assessed by Kaplan-Meier survival analysis. The effects of CARMA3, microRNA-182 (miR-182), and NME2 on cancer stemness and metastasis were measured in vitro and in vivo. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of NF-κB-driven miR-182 expression and NME2 regulation. MEASUREMENTS AND MAIN RESULTS We observed that CARMA3 inversely correlated with NME2 expression in patients with lung cancer (Pearson correlation coefficient: R = -0.24; P = 0.022). NME2 levels were significantly decreased in tumor tissues compared with adjacent normal lung tissues (P < 0.001), and patients with lung cancer with higher levels of NME2 had longer survival outcomes (overall survival, P < 0.01; disease-free survival, P < 0.01). Mechanistically, CARMA3 promoted cell motility by reducing the level of NME2 through the NF-κB/miR-182 pathway and by increasing cancer stem cell properties and metastasis in lung cancer. CONCLUSIONS We identified a novel mechanism of CARMA3 in lung cancer stemness and metastasis through the negative regulation of NME2 by NF-κB-dependent induction of miR-182. Our findings provide an attractive strategy for targeting the CARMA3/NF-κB/miR-182 pathway as a potential treatment for lung cancer.
Collapse
Affiliation(s)
- Yi-Wen Chang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,2 Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Chiu
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kang-Yun Lee
- 4 Department of Internal Medicine, School of Medicine, College of Medicine, and.,5 Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chen Hong
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yun Wang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Chia Cheng
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Hua Jan
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Shyan Huang
- 6 Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Ti Ma
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jen-Liang Su
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,7 Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan.,8 Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan; and.,9 Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-κB signalling. Nat Commun 2015; 6:5555. [PMID: 25602919 DOI: 10.1038/ncomms6555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
Abstract
CARMA1-mediated NF-κB activation controls lymphocyte activation through antigen receptors and survival of some malignant lymphomas. CARMA1 clusters are formed on physiological receptor-mediated activation or by its oncogenic mutation in activated B-cell-diffuse large B-cell lymphomas (ABC-DLBCLs) with constitutive NF-κB activation. However, regulatory mechanisms and relevance of CARMA1 clusters in the NF-κB pathway are unclear. Here we show that SH3 and GUK domain interactions of CARMA1 link CARMA1 clustering to signal activation. SH3 and GUK domains of CARMA1 interact by either intra- or intermolecular mechanisms, which are required for activation-induced assembly of CARMA1. Disruption of these interactions abolishes the formation of CARMA1 microclusters at the immunological synapse, CARMA-regulated signal activation following antigen receptor stimulation as well as spontaneous CARMA1 clustering and NF-κB activation by the oncogenic CARMA1 mutation in ABC-DLBCLs. Thus, the SH3-GUK interactions that regulate CARMA1 cluster formations are promising therapeutic targets for ABC-DLBCLs.
Collapse
|
9
|
D′ Andrea EL, Ferravante A, Scudiero I, Zotti T, Reale C, Pizzulo M, De La Motte LR, De Maio C, Mazzone P, Telesio G, Vito P, Stilo R. The Dishevelled, EGL-10 and pleckstrin (DEP) domain-containing protein DEPDC7 binds to CARMA2 and CARMA3 proteins, and regulates NF-κB activation. PLoS One 2014; 9:e116062. [PMID: 25541973 PMCID: PMC4277425 DOI: 10.1371/journal.pone.0116062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
The molecular complexes containing BCL10, MALT1 and CARMA proteins (CBM complex) have been recently identified as a key component in the signal transduction pathways that regulate activation of Nuclear Factor kappaB (NF-κB) transcription factor. Herein we identified the DEP domain-containing protein DEPDC7 as cellular binding partners of CARMA2 and CARMA3 proteins. DEPDC7 displays a cytosolic distribution and its expression induces NF-κB activation. Conversely, shRNA-mediated abrogation of DEPDC7 results in impaired NF-κB activation following G protein-coupled receptors stimulation, or stimuli that require CARMA2 and CARMA3, but not CARMA1. Thus, this study identifies DEPDC7 as a CARMA interacting molecule, and provides evidence that DEPDC7 may be required to specifically convey on the CBM complex signals coming from activated G protein-coupled receptors.
Collapse
Affiliation(s)
- Egildo Luca D′ Andrea
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
| | | | - Ivan Scudiero
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
| | - Carla Reale
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | | | - Luigi Regenburgh De La Motte
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Chiara De Maio
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | | | - Gianluca Telesio
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
- * E-mail:
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- SannioTech Consortium, Strada Statale Appia, Benevento, Italy
| |
Collapse
|
10
|
Scudiero I, Vito P, Stilo R. The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders. J Cell Physiol 2014; 229:990-7. [PMID: 24375035 DOI: 10.1002/jcp.24543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
Initially identified by their ability to modulate the functional activity of BCL10, the three CARMA proteins, CARMA1, -2, and -3, have recently themselves taken a leading role on the stage of molecular medicine. Although considered for some time as simple ancillary proteins, increasingly accumulating recent data evidently indicate a role of primary importance for these three proteins in the pathophysiology of several human tumors and inflammatory disorders. In fact, recent scientific literature clearly establishes that CARMA1 is one of the most mutated genes in a subtype of B-cell lymphoma and, at the same time, responsible for some rare human immunodeficiency conditions. On the other hand, mutations in CARMA2 are responsible for the hereditary transmission of some inflammatory disorders of the skin, including familial psoriasis and ptiriasis; whereas expression of CARMA3 appears to be deregulated in different human tumors. Here we describe and summarize the mutations found in the genes coding for the three CARMA proteins in these different human pathological conditions, and offer an interpretation of the molecular mechanisms from which arise the biological outcomes in which these proteins are involved.
Collapse
|
11
|
Qiao H, Liu Y, Veach RA, Wylezinski L, Hawiger J. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli. J Biol Chem 2014; 289:21973-83. [PMID: 24958727 DOI: 10.1074/jbc.m114.588723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists.
Collapse
Affiliation(s)
- Huan Qiao
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Yan Liu
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Ruth A Veach
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Lukasz Wylezinski
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jacek Hawiger
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
12
|
Rau CS, Yang JCS, Chen YC, Wu CJ, Lu TH, Tzeng SL, Wu YC, Hsieh CH. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells. Toxicol Sci 2014; 140:315-26. [PMID: 24863965 DOI: 10.1093/toxsci/kfu097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This aim of this study was to explore the role of miRNA-146a (miR-146a) and its target genes in endothelial cells. We demonstrated that lipopolysaccharide (LPS) induced the upregulation of miR-146a in human umbilical vein endothelial cells (HUVECs), and that the induction was blocked by silencing toll-like receptors, the adaptor molecule MyD88, and the nonspecific NF-κB inhibitor BAY 11-7082. In addition, knockdown of miR-146a by transfection of the locked nucleic acid antimiR-146a significantly inhibited LPS-induced cell migration and tube formation. A combined analysis of bioinformatics miRanda algorithms and a whole genome expression microarray of immunoprecipitated Ago2 ribonucleoprotein complexes identified 14 potential target genes. Subsequent transfection with the miR-146a precursor pre-miR-146a into HUVECs validated that CARD10 was the target gene of the miR-146a, both at the mRNA and protein levels. Silencing CARD10 inhibited p65 nuclear translocation in the cells receiving LPS stimulation and increased angiogenesis. Therefore, miR-146a may play a role in regulating the angiogenesis in HUVECs by downregulating CARD10, which acts in a negative feedback regulation loop to inhibit the activation of NF-κB that normally impairs angiogenesis.
Collapse
Affiliation(s)
| | - Johnson Chia-Shen Yang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Yi-Chun Chen
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Tsu-Hsiang Lu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Siou-Ling Tzeng
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
13
|
Liu J, Li J, Ren Y, Liu P. DLG5 in cell polarity maintenance and cancer development. Int J Biol Sci 2014; 10:543-9. [PMID: 24910533 PMCID: PMC4046881 DOI: 10.7150/ijbs.8888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Failure in establishment and maintenance of epithelial cell polarity contributes to tumorigenesis. Loss of expression and function of cell polarity proteins is directly related to epithelial cell polarity maintenance. The polarity protein discs large homolog 5 (DLG5) belongs to a family of molecular scaffolding proteins called Membrane Associated Guanylate Kinases (MAGUKs). As the other family members, DLG5 contains the multi-PDZ, SH3 and GUK domains. DLG5 has evolved in the same manner as DLG1 and ZO1, two well-studied MAGUKs proteins. Just like DLG1 and ZO1, DLG5 plays a role in cell migration, cell adhesion, precursor cell division, cell proliferation, epithelial cell polarity maintenance, and transmission of extracellular signals to the membrane and cytoskeleton. Since the roles of DLG5 in inflammatory bowel disease (IBD) and Crohn's disease (CD) have been reviewed, here, our review focuses on the roles of DLG5 in epithelial cell polarity maintenance and cancer development.
Collapse
Affiliation(s)
- Jie Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Juan Li
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Yu Ren
- 2. Department of Surgical Oncology, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Peijun Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| |
Collapse
|
14
|
Wang L, Qian L, Li X, Yan J. MicroRNA-195 inhibits colorectal cancer cell proliferation, colony-formation and invasion through targeting CARMA3. Mol Med Rep 2014; 10:473-8. [PMID: 24787958 DOI: 10.3892/mmr.2014.2178] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/07/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑195 has been reported to be a tumor suppressor. Downregulation of miR‑195 has been shown to correlate with lymph node metastasis and poor prognosis in colorectal cancer. However, the specific regulatory role of miR‑195 in colorectal cancer cells is yet to be elucidated. In the present study, miR‑195 expression was significantly reduced in colorectal cancer tissues. Furthermore, CARMA3 was identified as a novel target of miR‑195, which was observed to be upregulated in colorectal cancer. In addition, downregulation of miR‑195 increased CARMA3 protein expression, whereas miR‑195 upregulation suppressed CARMA3 protein expression in SW480 and HT29 colorectal cancer cells. Moreover, overexpression of miR‑195 downregulated cell proliferation, colony‑formation and invasion in SW480 and HT29 cells, which was reversed upon CARMA3 overexpression. In conclusion, the findings of the present study suggest that miR‑195 has a suppressive role in colorectal cancer cells through directly targeting CARMA3. Therefore, CARMA3 may be a potential target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ling Wang
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liyuan Qian
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jin Yan
- Department of Nursing, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Borthakur A, Bhattacharyya S, Kumar A, Anbazhagan AN, Tobacman JK, Dudeja PK. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS One 2013; 8:e75664. [PMID: 24130731 PMCID: PMC3794005 DOI: 10.1371/journal.pone.0075664] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h) of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05), compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.
Collapse
Affiliation(s)
- Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sumit Bhattacharyya
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Arivarasu Natarajan Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Genetic aberrations in imatinib-resistant dermatofibrosarcoma protuberans revealed by whole genome sequencing. PLoS One 2013; 8:e69752. [PMID: 23922791 PMCID: PMC3726773 DOI: 10.1371/journal.pone.0069752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022] Open
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma. DFSP often reveals a specific chromosome translocation, t(17;22)(q22;q13), which results in the fusion of collagen 1 alpha 1 (COL1A1) gene and platelet-derived growth factor-B (PDGFB) gene. The COL1A1-PDGFB fusion protein activates the PDGFB receptor and resultant constitutive activation of PDGFR receptor is essential in the pathogenesis of DFSP. Thus, blocking PDGFR receptor activation with imatinib has shown promising activity in the treatment of advanced and metastatic DFSP. Despite the success with targeted agents in cancers, acquired drug resistance eventually occurs. Here, we tried to identify potential drug resistance mechanisms against imatinib in a 46-year old female with DFSP who initially responded well to imatinib but suffered rapid disease progression. We performed whole-genome sequencing of both pre-treatment and post-treatment tumor tissue to identify the mutational events associated with imatinib resistance. No significant copy number alterations, insertion, and deletions were identified during imatinib treatment. Of note, we identified newly emerged 8 non-synonymous somatic mutations of the genes (ACAP2, CARD10, KIAA0556, PAAQR7, PPP1R39, SAFB2, STARD9, and ZFYVE9) in the imatinib-resistant tumor tissue. This study revealed diverse possible candidate mechanisms by which imatinib resistance to PDGFRB inhibition may arise in DFSP, and highlights the usefulness of whole-genome sequencing in identifying drug resistance mechanisms and in pursuing genome-directed, personalized anti-cancer therapy.
Collapse
|
17
|
Feng X, Miao G, Han Y, Xu Y. CARMA3 is overexpressed in human glioma and promotes cell invasion through MMP9 regulation in A172 cell line. Tumour Biol 2013; 35:149-54. [PMID: 23893382 DOI: 10.1007/s13277-013-1018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022] Open
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein 10 or CARMA3 (CARD10) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aims to investigate the expression pattern and biological roles of CARMA3 protein in human glioma. CARMA3 expression was analyzed in 97 glioma specimens using immunohistochemistry. We observed negative staining in normal astrocytes and positive staining of CARMA3 in 25 out of 97 (25.8%) glioma samples. Overexpression of CARMA3 correlated with tumor grade (p < 0.001). Small interfering RNA knockdown was performed in A172 cell line with relatively high CARMA3 expression. Using colony formation assay and Matrigel invasion assay, we showed that CARMA3 depletion in A172 cell line inhibited cell proliferation and cell invasion. In addition, mRNA and protein levels of matrix metallopeptidase 9 (MMP9) were downregulated, indicating CARMA3 might regulate invasion through MMP9. In conclusion, CARMA3 serves as an oncoprotein in human glioma by regulating cell invasion, possibly through MMP9 regulation.
Collapse
Affiliation(s)
- Xingjun Feng
- Department of Neurosurgery, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China,
| | | | | | | |
Collapse
|
18
|
Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment. Mol Psychiatry 2013; 18:781-7. [PMID: 23608917 PMCID: PMC3777294 DOI: 10.1038/mp.2013.24] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Whole-exome sequencing of individuals with mild cognitive impairment, combined with genotype imputation, was used to identify coding variants other than the apolipoprotein E (APOE) ε4 allele associated with rate of hippocampal volume loss using an extreme trait design. Matched unrelated APOE ε3 homozygous male Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were selected at the extremes of the 2-year longitudinal change distribution of hippocampal volume (eight subjects with rapid rates of atrophy and eight with slow/stable rates of atrophy). We identified 57 non-synonymous single nucleotide variants (SNVs) which were found exclusively in at least 4 of 8 subjects in the rapid atrophy group, but not in any of the 8 subjects in the slow atrophy group. Among these SNVs, the variants that accounted for the greatest group difference and were predicted in silico as 'probably damaging' missense variants were rs9610775 (CARD10) and rs1136410 (PARP1). To further investigate and extend the exome findings in a larger sample, we conducted quantitative trait analysis including whole-brain search in the remaining ADNI APOE ε3/ε3 group (N=315). Genetic variation within PARP1 and CARD10 was associated with rate of hippocampal neurodegeneration in APOE ε3/ε3. Meta-analysis across five independent cross sectional cohorts indicated that rs1136410 is also significantly associated with hippocampal volume in APOE ε3/ε3 individuals (N=923). Larger sequencing studies and longitudinal follow-up are needed for confirmation. The combination of next-generation sequencing and quantitative imaging phenotypes holds significant promise for discovery of variants involved in neurodegeneration.
Collapse
|
19
|
Zhao T, Miao Z, Wang Z, Xu Y, Wu J, Liu X, You Y, Li J. CARMA3 overexpression accelerates cell proliferation and inhibits paclitaxel-induced apoptosis through NF-κB regulation in breast cancer cells. Tumour Biol 2013; 34:3041-7. [PMID: 23708960 DOI: 10.1007/s13277-013-0869-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022] Open
Abstract
CARMA3 was recently reported to be overexpressed in several cancers and associated with malignant behavior of cancer cells. However, the expression pattern and biological roles of CARMA3 in breast cancer have not been reported. In the present study, we found that CARMA3 was overexpressed in 41.9 % of breast cancer specimens. Significant association was observed between CARMA3 overexpression and TNM stage (p = 0.0223), tumor size (p = 0.0227), and ErbB-2 status (p = 0.0049). Furthermore, knockdown of CARMA3 expression in MDA-MB-435 cells with high endogenous expression decreased cell proliferation and sensitized cell to paclitaxel-induced apoptosis, while overexpression of CARMA3 in MDA-MB-231 cell line promoted cell proliferation and inhibited apoptosis. Further analysis showed that CARMA3 depletion downregulated, and its overexpression upregulated cyclin D1, Bcl-2, and p-IκB levels. In conclusion, our study demonstrated that CARMA3 is overexpressed in breast cancers. CARMA3 facilitates proliferation and inhibits apoptosis through nuclear factor-kappaB signaling.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Heping District, Shenyang City, 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, Friis-Hansen L. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer 2012; 11:71. [PMID: 22992343 PMCID: PMC3515505 DOI: 10.1186/1476-4598-11-71] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA) have been shown to be involved in development and progression of gastric cancer. miRNA-146a (miR-146a) is a modulator of inflammatory signals, but little is known about its importance in gastric cancer. We therefore wanted to identify targets of miR-146a in gastric cancer and examine its biological roles. RESULTS The expression of miR-146a was evaluated by quantitative PCR (qPCR) and found up-regulated in the gastrin knockout mice, a mouse model of gastric cancer, and in 73% of investigated human gastric adenocarcinomas. Expression of miR-146a by gastric cancer cells was confirmed by in situ hybridization. Global analysis of changes in mRNA levels after miR-146a transfection identified two transcripts, caspase recruitment domain-containing protein 10 (CARD10) and COP9 signalosome complex subunit 8 (COPS8), as new miR-146a targets. qPCR, Western blotting and luciferase assays confirmed these transcripts as direct miR-146a targets. CARD10 and COPS8 were shown to be part of the G protein-coupled receptor (GPCR) pathway of nuclear factor-kappaB (NF-kappaB) activation. Lysophosphatidic acid (LPA) induces NF-kappaB activation via this pathway and over-expression of miR-146a inhibited LPA-induced NF-kappaB activation, reduced LPA-induced expression of tumor-promoting cytokines and growth factors and inhibited monocyte attraction. CONCLUSIONS miR-146a expression is up-regulated in a majority of gastric cancers where it targets CARD10 and COPS8, inhibiting GPCR-mediated activation of NF-kappaB, thus reducing expression of NF-kappaB-regulated tumor-promoting cytokines and growth factors. By targeting components of several NF-kappaB-activating pathways, miR-146a is a key component in the regulation of NF-kappaB activity.
Collapse
Affiliation(s)
- Stephanie Geisler Crone
- Genomic Medicine, Rigshospitalet, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen DK2100, Denmark
| | | | | | | | | | | | | |
Collapse
|