1
|
Bindu B, Manikandan A, Jeevitha S, Kunju JJ, Vijayalakshmi S. Imidazolidine-Based Aspartate Inhibitors for Candida Infections. Drug Dev Res 2025; 86:e70074. [PMID: 40159997 DOI: 10.1002/ddr.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The fungal infection gradually poses a life threat to mankind, candidiasis caused by Candida sp. is one among them. We describe the aspartate protease inhibition potentials of 12 sulfonyl-containing imidazolidines (5a-l) anti-candidal agents. Candida Albicans secretes aspartic proteases (Saps), one of its most important virulent agents. These hydrolytic enzymes are critical for both fungal physiological processes and host-fungus interactions. Compounds 5a-l were examined for their fungal aspartate protease inhibition apart from their anti-candida activity. These findings were equipped and validated in silico using molecular docking and in vitro enzyme inhibition assays. The study found that imidazolidine derivatives inhibited aspartic protease and exhibited anti-candida action. Conclusively, imidazolidines 5g, 5h, and 5j were perceived as the most potent anti-candida compounds and are presently being evaluated for their preclinical studies.
Collapse
Affiliation(s)
- B Bindu
- Department of Chemistry, Government Arts College, Coimbatore, India
| | - A Manikandan
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Jeevitha
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - Joe Jacob Kunju
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Vijayalakshmi
- Department of Chemistry, Government Arts College, Coimbatore, India
| |
Collapse
|
2
|
S J, A M, P P, G R. Anticandidal Effect of New Imidazole Derivatives Over Aspartic Protease Inhibition. Chem Biodivers 2024; 21:e202301276. [PMID: 38175829 DOI: 10.1002/cbdv.202301276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Candidiasis is one of the most serious microbial infections in the world. One of the main virulence factors for Candida albicans is the crucial secretion of aspartic proteases (Saps). Saps are hydrolytic enzymes that play a major role in many fungal pathophysiological processes as well as in many levels of the associations between the fungus and its host. In this work, we report on the synthesis, characterization, and anti-candida agent evaluation of a family of 13 imidazolidine-based aspartate protease inhibitors. In vitro and in silico enzyme inhibition studies have confirmed these compounds' ability to inhibit fungal aspartate protease. Based on the molecular mechanistic value scores from molecular docking and MD simulations, we selected the top compounds 5b (binding energy -13.90 kcal/mol) and 5m (binding energy -12.94 kcal/mol) from among 5a-l based on the molecular mechanistic value scores from molecular docking and MD simulations for use in in vitro validations. In the results, imidazolidine derivatives showed strong aspartic protease inhibition activity. In conclusion, compounds 5b and 5m were found as potent anti-candida agents and screened for further pre-clinical and clinical validations.
Collapse
Affiliation(s)
- Jeevitha S
- Department Biochemistry, M S Ramaiah College of Arts, Science and Commerce, Bangalore, 54, Karnataka, India
| | - Manikandan A
- Department of Microbiology, M S Ramaiah College of Arts, Science and Commerce, Bangalore, 54, Karnataka, India
| | - Pavan P
- Department of Humanities and Basic Sciences, G. Pulla Reddy Engineering College, Kurnool, 518007, India
| | - Rubalakshmi G
- Department of Biotechnology, Vinayaka Missions Kirupananda Variyar Engineering College, Salem, 08, India
| |
Collapse
|
3
|
Rigo GV, Cardoso FG, Pereira MM, Devereux M, McCann M, Santos ALS, Tasca T. Peptidases Are Potential Targets of Copper(II)-1,10-Phenanthroline-5,6-dione Complex, a Promising and Potent New Drug against Trichomonas vaginalis. Pathogens 2023; 12:pathogens12050745. [PMID: 37242415 DOI: 10.3390/pathogens12050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Trichomonas vaginalis is responsible for 156 million new cases per year worldwide. When present asymptomatically, the parasite can lead to serious complications, such as development of cervical and prostate cancer. As infection increases the acquisition and transmission of HIV, the control of trichomoniasis represents an important niche for the discovery and development of new antiparasitic molecules. This urogenital parasite synthesizes several molecules that allow the establishment and pathogenesis of infection. Among them, peptidases occupy key roles as virulence factors, and the inhibition of these enzymes has become an important mechanism for modulating pathogenesis. Based on these premises, our group recently reported the potent anti-T. vaginalis action of the metal-based complex [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione). In the present study, we evaluated the influence of Cu-phendione on the modulation of proteolytic activities produced by T. vaginalis by biochemical and molecular approaches. Cu-phendione showed strong inhibitory potential against T. vaginalis peptidases, especially cysteine- and metallo-type peptidases. The latter revealed a more prominent effect at both the post-transcriptional and post-translational levels. Molecular Docking analysis confirmed the interaction of Cu-phendione, with high binding energy (-9.7 and -10.7 kcal·mol-1, respectively) at the active site of both TvMP50 and TvGP63 metallopeptidases. In addition, Cu-phendione significantly reduced trophozoite-mediated cytolysis in human vaginal (HMVII) and monkey kidney (VERO) epithelial cell lineages. These results highlight the antiparasitic potential of Cu-phendione by interaction with important T. vaginalis virulence factors.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Fernanda Gomes Cardoso
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Matheus Mendonça Pereira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Michael Devereux
- The Inorganic Pharmaceutical and Biomimetic Research Centre, Focas Research Institute, Dublin Institute of Technology, D08 CKP1 Dublin, Ireland
| | - Malachy McCann
- Chemistry Department, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
4
|
Ennes-Vidal V, Branquinha MH, dos Santos ALS, d’Avila-Levy CM. The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity? Cells 2021; 10:cells10020299. [PMID: 33535641 PMCID: PMC7912814 DOI: 10.3390/cells10020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
Calpains are calcium-dependent cysteine peptidases that were originally described in mammals and, thereafter, their homologues were identified in almost all known living organisms. The deregulated activity of these peptidases is associated with several pathologies and, consequently, huge efforts have been made to identify selective inhibitors. Trypanosomatids, responsible for life-threatening human diseases, possess a large and diverse family of calpain sequences in their genomes. Considering that the current therapy to treat trypanosomatid diseases is limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures, a repurposed approach with calpain inhibitors could be a shortcut to successful chemotherapy. However, there is a general lack of knowledge about calpain functions in these parasites and, currently, the proteolytic activity of these proteins is still an open question. Here, we highlight the current research and perspectives on trypanosomatid calpains, overview calpain description in these organisms, and explore the potential of targeting the calpain system as a therapeutic strategy. This review gathers the current knowledge about this fascinating family of peptidases as well as insights into the puzzle: are we unable to measure calpain activity in trypanosomatids, or are the functions of these proteins devoid of proteolytic activity in these parasites?
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil;
- Correspondence: ; Tel.: +55-21-2562-1014
| | - Marta Helena Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil; (M.H.B.); (A.L.S.d.S.)
| | - André Luis Souza dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil; (M.H.B.); (A.L.S.d.S.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Claudia Masini d’Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil;
| |
Collapse
|
5
|
Granato MQ, Sousa IS, Rosa TLSA, Gonçalves DS, Seabra SH, Alviano DS, Pessolani MCV, Santos ALS, Kneipp LF. Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction. J Enzyme Inhib Med Chem 2020; 35:629-638. [PMID: 32037904 PMCID: PMC7034032 DOI: 10.1080/14756366.2020.1724994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Daniela S. Alviano
- Laboratório de Estrutura de Microrganismos, IMPPG, UFRJ, Rio de Janeiro, Brazil
| | | | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Ramos LS, Oliveira SSC, Braga-Silva LA, Branquinha MH, Santos ALS. Secreted aspartyl peptidases by the emerging, opportunistic and multidrug-resistant fungal pathogens comprising the Candida haemulonii complex. Fungal Biol 2020; 124:700-707. [PMID: 32690251 DOI: 10.1016/j.funbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023]
Abstract
The opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) are notable for their intrinsic resistance to different antifungal classes. Little is known about the virulence attributes in this emerging fungal complex. However, it is well-recognized that enzymes play important roles in virulence/pathogenesis of candidiasis. Herein, we aimed to identify aspartyl-type peptidases in 12 clinical isolates belonging to the C. haemulonii complex. All isolates were able to grow in a chemically defined medium containing albumin as the sole nitrogen source, and a considerable consumption of this protein occurred after 72-96 h. C. haemulonii var. vulnera isolates showed the lowest albumin degradation capability and the poorest growth rate. The measurement of secreted aspartyl peptidase (Sap) activity, using the cathepsin D fluorogenic substrate, varied from 91.6 to 413.3 arbitrary units and the classic aspartyl peptidase inhibitor, pepstatin A, significantly blocked the Sap released by C. haemulonii complex. No differences were observed in the Sap activity among the three fungal species. Flow cytometry, using a polyclonal antibody against Sap1-3 of C. albicans, detected homologous proteins at the surface of C. haemulonii complex (anti-Sap1-3-labeled cells ranged from 24.6 to 79.1%). Additionally, the immunoblotting assay, conducted with the same Sap1-3 antibody, recognized a protein of ∼50 kDa in all fungal isolates. A glimpse in the genome of these fungi revealed several potential proteins containing Sap1-3-like conserved domain. Altogether, our results demonstrated the potential of C. haemulonii species complex to produce Saps, an important virulence factor of Candida spp.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
McDonald CA, Ellison AR, Toledo LF, James TY, Zamudio KR. Gene expression varies within and between enzootic and epizootic lineages of Batrachochytrium dendrobatidis (Bd) in the Americas. Fungal Biol 2019; 124:34-43. [PMID: 31892375 DOI: 10.1016/j.funbio.2019.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
While much research focus is paid to hypervirulent fungal lineages during emerging infectious disease outbreaks, examining enzootic pathogen isolates can be equally fruitful in delineating infection dynamics and determining pathogenesis. The fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), exhibits markedly different patterns of disease in natural populations, where it has caused massive amphibian declines in some regions, yet persists enzootically in others. Here we compare in vitro gene expression profiles of a panel of Bd isolates representing both the enzootic Bd-Brazil lineage, and the more recently diverged, panzootic lineage, Bd-GPL. We document significantly different lineage-specific and intralineage gene expression patterns, with Bd-Brazil upregulating genes with aspartic-type peptidase activity, and Bd-GPL upregulating CBM18 chitin-binding genes, among others. We also find pronounced intralineage variation in membrane integrity and transmembrane transport ability within our Bd-GPL isolates. Finally, we highlight unexpectedly divergent expression profiles in sympatric panzootic isolates, underscoring microgeographic functional variation in a largely clonal lineage. This variation in gene expression likely plays an important role in the relative pathogenesis and host range of Bd-Brazil and Bd-GPL isolates. Together, our results demonstrate that functional genomics approaches can provide information relevant to studies of virulence evolution within the Bd clade.
Collapse
Affiliation(s)
- C A McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA.
| | - A R Ellison
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - L F Toledo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Ennes-Vidal V, Vitório BDS, Menna-Barreto RFS, Pitaluga AN, Gonçalves-da-Silva SA, Branquinha MH, Santos ALS, d'Avila-Levy CM. Calpains of Leishmania braziliensis: genome analysis, differential expression, and functional analysis. Mem Inst Oswaldo Cruz 2019; 114:e190147. [PMID: 31553371 PMCID: PMC6759280 DOI: 10.1590/0074-02760190147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Calpains are proteins belonging to the multi-gene family of
calcium-dependent cysteine peptidases that undergo tight on/off regulation,
and uncontrolled proteolysis of calpains is associated with severe human
pathologies. Calpain orthologues are expanded and diversified in the
trypanosomatids genome. OBJECTIVES Here, we characterised calpains in Leishmania braziliensis,
the main causative agent of cutaneous leishmaniasis in Brazil. METHODS/FINDINGS In total, 34 predicted calpain-like genes were identified. After domain
structure evaluation, reverse transcription-quantitative polymerase chain
reaction (RT-qPCR) during in vitro metacyclogenesis
revealed (i) five genes with enhanced expression in the procyclic stage,
(ii) one augmented gene in the metacyclic stage, and (iii) one
procyclic-exclusive transcript. Western blot analysis revealed that an
antibody against a consensus-conserved peptide reacted with multiple
calpain-like proteins, which is consistent with the multi-gene family
characteristic. Flow cytometry and immunocytochemistry analyses revealed the
presence of calpain-like molecules mainly in the cytoplasm, to a lesser
extent in the plasma membrane, and negligible levels in the nucleus, which
are all consistent with calpain localisation. Eventually, the calpain
inhibitor MDL28170 was used for functional studies revealing (i) a
leishmaniostatic effect, (ii) a reduction in the association index in mouse
macrophages, (iii) ultra-structural alterations conceivable with autophagy,
and (iv) an enhanced expression of the virulence factor GP63. CONCLUSION This report adds novel insights into the domain structure, expression, and
localisation of L. braziliensis calpain-like molecules.
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| | - Bianca da Silva Vitório
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| | | | - André Nóbrega Pitaluga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil
| | | | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - André Luis Souza Santos
- Universidade Federal do Rio de Janeiro, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini d'Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
9
|
SOUTO XÊNIAM, BRANQUINHA MARTAH, SANTOS ANDRÉL. Chymotrypsin- and trypsin-like activities secreted by the multidrug-resistant yeasts forming the Candida haemulonii complex. ACTA ACUST UNITED AC 2019; 91:e20180735. [DOI: 10.1590/0001-3765201920180735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/18/2018] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - ANDRÉ L.S. SANTOS
- Universidade Federal do Rio de Janeiro/UFRJ, Brazil; Universidade Federal do Rio de Janeiro/UFRJ, Brazil
| |
Collapse
|
10
|
Souto XM, Ramos LS, Branquinha MH, Santos ALS. Identification of cell-associated and secreted serine-type peptidases in multidrug-resistant emergent pathogens belonging to the Candida haemulonii complex. Folia Microbiol (Praha) 2018; 64:245-255. [DOI: 10.1007/s12223-018-0651-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023]
|
11
|
Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170. Parasitol Res 2018; 117:2085-2094. [PMID: 29728827 DOI: 10.1007/s00436-018-5894-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023]
Abstract
Despite the available drug options, leishmaniasis treatment remains unsatisfactory. The repurposing of calpain inhibitors originally developed for human diseases became an interesting alternative, since Leishmania cells express calpain-related proteins. The susceptibility of six Leishmania species (L. amazonensis, L. braziliensis, L. major, L. mexicana, L. chagasi, and L. donovani) to the calpain inhibitor MDL28170 was determined. Promastigote and intracellular amastigote viability in the presence of MDL28170 was evaluated. MDL28170 was able to reduce promastigote proliferation in a dose-dependent manner for all the parasites. A significant reduction on the general parasite metabolism was detected, as judged by resazurin assay, as well as induced important morphological alterations, including rounding promastigotes and loss of the flagellum. MDL28170 was also able to reduce the number of intracellular amastigotes in RAW macrophages. The susceptibility of both parasite stages (promastigotes and amastigotes) to MDL28170 was similar for all Leishmania species tested. MDL28170 showed a much higher toxicity to Leishmania amastigotes when compared with mammalian macrophages, displaying selectivity index values varying from 13.1 to 39.8. These results suggest that the development of calpain inhibitors may represent an interesting alternative in the treatment of leishmaniasis.
Collapse
|
12
|
Palmeira VF, Alviano DS, Braga-Silva LA, Goulart FRV, Granato MQ, Rozental S, Alviano CS, Santos ALS, Kneipp LF. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi. Front Microbiol 2017; 8:918. [PMID: 28579986 PMCID: PMC5437157 DOI: 10.3389/fmicb.2017.00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023] Open
Abstract
Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Fátima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| |
Collapse
|
13
|
Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog 2016; 12:e1006051. [PMID: 27977806 PMCID: PMC5158083 DOI: 10.1371/journal.ppat.1006051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors. Many pathogenic organisms secrete peptidases. The activity of these enzymes often contributes to virulence, making their study crucial for understanding host-pathogen biology and developing therapeutics. In this report, we employed an unbiased, activity-based profiling assay to examine the secreted peptidases of a fungal pathogen, Cryptococcus neoformans, which is responsible for 40% of AIDS-related deaths. We discovered which peptidases are secreted, identified their substrate specificity, and interrogated their biological functions. Through this analysis, we identified a principal enzyme responsible for the extracellular peptidase activity of C. neoformans, May1, and demonstrated its importance for growth in acidic environments. Characterization of its substrate preferences allowed us to identify compounds that are potent substrate-based inhibitors of May1 activity. Finally, we found that the presence of this enzyme promotes virulence in a mouse model of infection. Our comprehensive study reveals the expression, regulation and function of C. neoformans secreted peptidases, including evidence for the role of a novel aspartyl peptidase in virulence.
Collapse
|
14
|
de Almeida L, Alves KF, Maciel-Rezende CM, Jesus LDOP, Pires FR, Junior CV, Izidoro MA, Júdice WADS, dos Santos MH, Marques MJ. Benzophenone derivatives as cysteine protease inhibitors and biological activity against Leishmania(L.) amazonensis amastigotes. Biomed Pharmacother 2015; 75:93-9. [DOI: 10.1016/j.biopha.2015.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/08/2015] [Accepted: 08/23/2015] [Indexed: 01/31/2023] Open
|
15
|
Granato MQ, Massapust PDA, Rozental S, Alviano CS, dos Santos ALS, Kneipp LF. 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation. Mycopathologia 2014; 179:231-42. [PMID: 25502596 DOI: 10.1007/s11046-014-9832-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022]
Abstract
Phialophora verrucosa is one of the etiologic agents of chromoblastomycosis, a fungal infection that affects cutaneous and subcutaneous tissues. This disease is chronic, recurrent and difficult to treat. Several studies have shown that secreted peptidases by fungi are associated with important pathophysiological processes. Herein, we have identified and partially characterized the peptidase activity secreted by P. verrucosa conidial cells. Using human serum albumin as substrate, the best hydrolysis profile was detected at extreme acidic pH (3.0) and at 37 °C. The enzymatic activity was completely blocked by classical metallopeptidase inhibitors/chelating agents as 1,10-phenanthroline and EGTA. Zinc ions stimulated the metallo-type peptidase activity in a dose-dependent manner. Several proteinaceous substrates were cleaved, in different extension, by the P. verrucosa metallopeptidase activity, including immunoglobulin G, fibrinogen, collagen types I and IV, fibronectin, laminin and keratin; however, mucin and hemoglobin were not susceptible to proteolysis. As metallopeptidases participate in different cellular metabolic pathways in fungal cells, we also tested the influence of 1,10-phenanthroline and EGTA on P. verrucosa development. Contrarily to EGTA, 1,10-phenanthroline inhibited the fungal viability (MIC 0.8 µg/ml), showing fungistatic effect, and induced profound morphological alterations as visualized by transmission electron microscopy. In addition, 1,10-phenanthroline arrested the filamentation process in P. verrucosa. Our results corroborate the supposition that metallopeptidase inhibitors/chelating agents have potential to control crucial biological events in fungal agents of chromoblastomycosis.
Collapse
Affiliation(s)
- Marcela Queiroz Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Menon V, Rao M. A low-molecular-mass aspartic protease inhibitor from a novel Penicillium sp.: implications in combating fungal infections. Microbiology (Reading) 2012; 158:1897-1907. [DOI: 10.1099/mic.0.058511-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vishnu Menon
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Mala Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|