1
|
Sasaki Y, Ohnishi S, Takahashi H, Ishikawa K, Miura T, Funayama E, Okubo N, Yamamoto Y, Maeda T. Extracellular matrix modulating effects of amnion-derived mesenchymal stem cells on aging skin wounds in α-Klotho knockout mice. Geriatr Gerontol Int 2025; 25:701-708. [PMID: 40229127 DOI: 10.1111/ggi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
AIM Wounds in the elderly are frequently recalcitrant and chronic as a result of the effects of skin aging and associated complications. The objective of this study is to utilize an α-Klotho knockout (KO) mice wound model to assess the capacity of amnion-derived mesenchymal stem cells (AMSCs) to facilitate wound healing in aging skin. METHODS AMSCs were applied topically to the wound after extraction and gelatinization of the conditioned medium (CM). Animal experiments were performed with two distinct mouse strains: α-Klotho KO mice and wild-type mice. Full-thickness skin defect models with a diameter of 8 mm were created by incising the skin on the left and right sides of the dorsum. On day 8 after wound creation, the mice were sacrificed, and wound tissue was collected for analysis through histological and immunohistochemical evaluations, as well as through quantitative polymerase chain reaction. RESULTS The topical application of CM gel to wounds of α-Klotho KO mice demonstrated that wound healing was significantly higher than that observed in control, reaching the wound closure rate of wild-type mice on day 8. Additionally, gene expression analysis of wound tissue indicated that AMSC-CM may regulate extracellular matrix formation and fibrosis. Moreover, histological analysis indicated that AMSC-CM may facilitate wound contraction of aging skin wounds of α-Klotho KO mice by inducing myofibroblast differentiation and promoting granulation and collagen formation, which are the primary components of the extracellular matrix. CONCLUSIONS AMSC-CM may facilitate wound healing in aging skin of α-Klotho KO mice by regulating the extracellular matrix. Geriatr Gerontol Int 2025; 25: 701-708.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Hiroko Takahashi
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoto Okubo
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Jin Z, Dai W, Huang Z, Li Q, Zhu Y, Wang W, Xu H. Engineered Titanium Oxide Nanoplatform for Targeted Photodynamic/Photothermal-Gas Therapy in Keloid Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20705-20716. [PMID: 40138575 DOI: 10.1021/acsami.4c22289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Keloids pose a considerable worldwide health issue owing to their continual proliferation, invasiveness, and elevated recurrence rates. Keloids are abnormal scars formed through dysregulated wound healing processes, characterized by excessive keloid fibroblast (KF) proliferation, irregular collagen deposits, and persistent reticular dermis inflammation, which can lead to limited joint mobility, psychological distress, and severe pain and itching. In this study, we present metal-organic framework (MOF)-derived TiO2-based nanoparticles (LA@CTx NPs) synthesized as a phototherapy-gas-therapy nanoplatform, which have the ability to break down collagen, reduce inflammation, and stop the overproliferation of keloid fibroblasts. The MIL-125-derived nanoparticles maintain their crystalline framework while being rich in oxygen vacancies (OVs) and l-arginine (LA), enabling efficient photothermal conversion and reactive oxygen species (ROS) generation driven by synergistic near-infrared (NIR). Importantly, ROS generated by the NPs can trigger nitric oxide (NO) production by oxidizing LA, with the concentration of NO finely tunable via modulation of light conditions. This allows for a dual therapeutic effect: low NO concentrations suppress inflammation, while higher concentrations induce cell death. In vitro and in vivo investigations show that LA@CTx nanoparticles efficiently eliminate primary keloid lesions and provoke apoptosis in keloid cells by dual-modality activation of photodynamic and photothermal treatments facilitated by single NIR irradiation. The study presents an innovative method of therapy for the clinical treatment of keloids.
Collapse
Affiliation(s)
- Zilong Jin
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Medicine 1, HoUniversity spital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen 91054, Germany
| | - Zhengjie Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Qinglin Li
- Research Institute of Plastic Surgery, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Yuduo Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - He Xu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
3
|
El-Shiekh RA, Radi MH, Elshimy R, Abdel-Sattar E, El-Halawany AM, Ibrahim MA, Ali ME, Hassanen EI. Friedelin: A natural compound exhibited potent antibacterial, anti-inflammatory, and wound healing properties against MRSA-infected wounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03965-8. [PMID: 40100378 DOI: 10.1007/s00210-025-03965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is primarily recognized as a pathogen responsible for skin, soft tissue, and multiple organs infection. The colonization of the skin and mucous membranes by hypervirulent resistant bacteria like MRSA during hospitalization significantly contributes to life-threatening conditions. Friedelin (FRN) is a pentacyclic triterpene (C30H50O) isolated from Euphorbia grantii Oliv. The current work aims to determine the efficacy of FRN against MRSA-infected wounds in mice besides the in vitro study to evaluate its bactericidal activity. The in vitro study revealed that FRN was strongly active against MRSA which had a wide zone of MRSA growth inhibition and promising minimum inhibitory concentration (MIC). Moreover, FRN downregulated the major virulence genes seb and icaD, responsible for the production of staphylococcal enterotoxin SED and biofilm formation, respectively in contrast to the untreated group. The dressing of MRSA-infected wound with 40 ppm FRN significantly reduced the wound size and bacterial count and accelerated the process of wound healing which had a higher immune expression of both VEGF (vascular endothelial growth factor) and α-SMA (alpha smooth muscle actin) compared with other treated groups. Additionally, FRN could reduce the inflammatory response of MRSA in a dose-dependent manner by downregulating the TNF-α (tumor necrosis factor-α) and PGS-2 (prostaglandin synthase-2) gene expression levels. FRN is effective against MRSA-infected wounds via its potent bactericidal and anti-inflammatory activities that accelerate angiogenesis and wound maturation.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, 12573, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Naik K, Tripathi S, Ranjan R, Agrawal S, Singh S, Dhar P, Singh K, Tiwari V, Parmar AS. Conductive Hybrid Hydrogel of Carbon Nanotubes-Protein-Cellulose: In Vivo Treatment of Diabetic Wound via Photothermal Therapy and Tracking Real-Time Wound Assessment via Photoacoustic Imaging. ACS APPLIED BIO MATERIALS 2025; 8:2229-2241. [PMID: 39968957 DOI: 10.1021/acsabm.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diabetic wounds pose significant challenges in healthcare due to their slow healing rates and susceptibility to infections, leading to severe complications. In this study, we developed a carbon nanotube-based conductive protein-cellulose hydrogel designed to enhance wound healing through photothermal therapy. The hydrogel's unique properties, including high electrical conductivity and biocompatibility, were assessed in vitro for cell viability, hemolysis, and histological evaluations. In vivo studies on diabetic rats revealed that the hydrogel significantly improved wound healing, with faster wound closure rates. These results were supported by noticeable reductions in inflammatory markers and enhanced blood vessel formation, as observed through immunohistochemical analysis. Additionally, photoacoustic imaging offered real-time data on blood flow and tissue oxygen levels, showing positive trends in the healing process. Overall, these findings point to the potential of this conductive hydrogel, especially when paired with photothermal therapy, to serve as an effective treatment for diabetic wounds, offering promising possibilities in wound care strategies.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
- Proamyloidocare Pt. Ltd., Varanasi, Uttar Pradesh 221005, India
| | - Shikha Tripathi
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rahul Ranjan
- Department of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Somesh Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shweta Singh
- Dr Shayama Prasad Mukherjee Government Degree College, Bhadohi, Uttar Pradesh 221401, India
| | - Prodyut Dhar
- Department of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
- Proamyloidocare Pt. Ltd., Varanasi, Uttar Pradesh 221005, India
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Poorkazem H, Saber M, Moradmand A, Yakhkeshi S, Seydi H, Hajizadeh-Saffar E, Shekari F, Hassani SN. Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process. Int J Biochem Cell Biol 2025; 180:106737. [PMID: 39828140 DOI: 10.1016/j.biocel.2025.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied. This study aimed to evaluate the effects of two distinct subpopulations of clonal mesenchymal stromal cells (cMSC)-derived EVs (cMSC-EVs), namely 20 K and 110K-cMSC-EVs, primarily on in vitro wound healing process, providing fast and cost-effective alternatives to animal models. METHODS In vitro assays were conducted to compare the effects of 20 K and 110K-cMSC-EVs, isolated through high-speed centrifugation and differential ultracentrifugation, respectively. For evaluation the main mechanisms of wound healing, including cell proliferation, cell migration, angiogenesis, and contraction. Human dermal fibroblasts (HDF) were considered as the main cells for analysis of these procedures. Moreover, gene expression analysis was performed to assess the impact of these EV subpopulations on the related process of wound healing on HDF. RESULTS The results demonstrated that both 20 K and 110K-cMSC-EVs exhibited beneficial effects on cell proliferation, cell migration, angiogenesis, and gel contraction. RT-qPCR revealed that both EV types downregulated interleukin 6 (IL6), induced proliferation by upregulating proliferating cell nuclear antigen (PCNA), and regulated remodeling by upregulating matrix metallopeptidase 1 (MMP1) and downregulating collagen type 1 (COL1). DISCUSSION This study highlights the effects of both 20 K and 110K-cMSC-EVs on the potency of HDFs in wound healing-related process. As the notable finding, 20K-cMSC-EVs offer a more feasible and cost-effective subpopulation for isolation and follow the GMP standard, recommended to utilize this fraction for therapeutic application.
Collapse
Affiliation(s)
- Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Maleki MH, Miladpour B, Mazhari SA, Far MH, Rajabi M, Alinejad M, Dehghanian A, Beigmohammadi F, Esmaeli N, Siri M, Aryanian Z. Exploring Isotretinoin's Unexpected Acceleration of wound Healing: A rat model study. Int Immunopharmacol 2025; 148:114145. [PMID: 39889411 DOI: 10.1016/j.intimp.2025.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND There have been clinical observations indicating that wound healing could be affected in patients undergoing systemic isotretinoin treatment. However, the precise role of retinoids in wound healing is still unclear and controversial. It is generally assumed that systemic retinoids could be harmful to wound healing, but this requires further investigation. METHODS Sprague-Dawley rats were gavaged with 2 mg/Kg/day of Isotretinoin and divided into three groups: Control, Isotretinoin/1month and Isotretinoin/2month. Photographic documentation and histomorphometric investigation were performed. The mRNA expressions of IL-6, MCP-1, VEGF, ICAM1, L-Selectin, TGF-1β, IL-10, IL-1α, and IL-8 were examined by qRT-PCR. RESULTS There was no significant impact on the rate of wound closure in Isotretinoin/1month group. However, a two-month regimen accelerated the wound-healing process. RT-PCR results revealed increased expression of IL-6, IL-8, IL-1α, TGF-β1, IL-10 MCP-1, ICAM1, L-Selectin, and VEGF rats that were administered Isotretinoin. Histological observations showed an increased number of mast cells in the wound areas of rats treated with Isotretinoin. CONCLUSION Our research indicated that taking Isotretinoin did not slow down wound healing and may even help the growth phase. Additionally, we did not observe any keloid formation during our histopathological analysis, suggesting that it may not be necessary to postpone invasive surgical procedures for six months after Isotretinoin therapy.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Autoimmune Bullous Diseases Research Center Razi Hospital Tehran University of Medical Sciences Tehran Iran; Endocrinology and Metabolism Research Center Shiraz University of Medical Science Shiraz Iran
| | - Behnoosh Miladpour
- Department of Clinical Biochemistry Fasa University of Medical Sciences Fasa Iran
| | | | - Mohammad Hojjati Far
- Department of physiology School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Mahsa Rajabi
- Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahdi Alinejad
- Department of Gastroenterology Kerman University of Medical Sciences Kerman Iran
| | - Amirreza Dehghanian
- Trauma Research Center Shiraz University of Medical Sciences Shiraz Iran; Molecular Pathology and Cytogenetics Division Department of Pathology School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Fereshteh Beigmohammadi
- Autoimmune Bullous Diseases Research Center Razi Hospital Tehran University of Medical Sciences Tehran Iran
| | - Nafiseh Esmaeli
- Autoimmune Bullous Diseases Research Center Razi Hospital Tehran University of Medical Sciences Tehran Iran; Department of Dermatology Razi Hospital School of Medicine Tehran University of Medical Sciences Iran
| | - Morvarid Siri
- Endocrinology and Metabolism Research Center Shiraz University of Medical Science Shiraz Iran; Autophagy Research Centre Shiraz University of Medical Sciences Shiraz Iran.
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center Razi Hospital Tehran University of Medical Sciences Tehran Iran; Department of Dermatology Babol University of Medical Sciences Babol Iran.
| |
Collapse
|
7
|
Doci RSA, Carvalho FFD, Gomes RC, Gianini RJ, Fanelli C, Noronha IDL, Santos NBD, Hausen MDA, Komatsu D, Randazzo-Moura P. Pharmacological effects of triamcinolone associated with surgical glue on cutaneous wound healing in rats. Acta Cir Bras 2024; 39:e399624. [PMID: 39661810 DOI: 10.1590/acb399624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE The surgical glue is widely used in closing cutaneous surgical wounds. Corticosteroids are indicated for their anti-inflammatory and immunomodulatory properties. The present work evaluated the pharmacological effects of triamcinolone (AT) incorporated into surgical glue (C) on the initial phase of the wound healing process in Wistar rats. METHODS Through in-vivo studies, the effects of the healing process, C or C+AT in the same rat were evaluated for seven and 14 days post-surgery. RESULTS The C+AT association did not change the physicochemical properties of the polymer. This association in wound healing confirmed the anti-inflammatory and immunomodulatory effects of the corticosteroid, with less neovascularization and fibrosis, in addition to the remodeling of the extracellular matrix carried out by the balance of myofibroblasts and less dense collagen fibers, culminating in tissue regeneration and possible reduction of side effects. CONCLUSION This association is a powerful and innovative pharmacological tool, promising in translational medicine.
Collapse
Affiliation(s)
- Rosana Soares Araújo Doci
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Filipe Feitosa de Carvalho
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Rodrigo César Gomes
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Biomaterials Laboratory - São Paulo (SP) - Brazil
| | - Reinaldo José Gianini
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Camilla Fanelli
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Irene de Lourdes Noronha
- Universidade de São Paulo - Medical School - Laboratory of Cellular, Genetic, and Molecular Nephrology - São Paulo (SP) - Brazil
| | - Nelson Brancaccio Dos Santos
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Pathology Laboratory - São Paulo (SP) - Brazil
| | - Moema de Alencar Hausen
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Daniel Komatsu
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| | - Priscila Randazzo-Moura
- Pontifícia Universidade Católica de São Paulo - Faculty of Medical and Health Sciences - Program of Postgraduate in Biomaterials and Regenerative Medicine - São Paulo (SP) - Brazil
| |
Collapse
|
8
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Arai K, Yoshida S, Furuichi E, Iwanaga S, Mir TA, Yoshida T. Transplanted artificial amnion membrane enhanced wound healing in third-degree burn injury diabetic mouse model. Regen Ther 2024; 27:170-180. [PMID: 38571890 PMCID: PMC10987674 DOI: 10.1016/j.reth.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Wound healing is severely compromised in patients with diabetes owing to factors such poor blood circulation, delayed immune response, elevated blood sugar levels, and neuropathy. Although the development of new wound healing products and prevention of serious complications such as infections in wounds have received substantial interest, wound healing remains a challenge in regenerative medicine. Burn wounds, especially third-degree burns, are difficult to treat because they are associated with immune and inflammatory reactions and distributive shock. Wound care and treatment that protects the burn site from infection and allows wound healing can be achieved with bioengineered wound dressings. However, few studies have reported effective dressings for third-degree burn wounds, making it important to develop new dressing materials. Methods In this study, we developed an artificial amniotic membrane (AM) using epithelial and mesenchymal cells derived from human amnion as a novel dressing material. The artificial AM was applied to the wound of a diabetic third-degree burn model and its wound healing ability was evaluated. Results This artificial amnion produced multiple growth factors associated with angiogenesis, fibroblast proliferation, and anti-inflammation. In addition, angiogenesis and granulation tissue formation were promoted in the artificial AM-treated mouse group compared with the control group. Furthermore, the inflammatory phase was prolonged in the control group. Conclusions Our preliminary results indicate that the artificial AM might be useful as a new dressing for refractory ulcers and third-degree burns. This artificial AM-based material represents great potential for downstream clinical research and treatment of diabetes patients with third-degree burns.
Collapse
Affiliation(s)
- Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Satoshi Yoshida
- Department of Medical Oncology, Toyama University Hospital, Toyama, Japan
| | - Etsuko Furuichi
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
11
|
Kusumo MHB, Prayitno A, Soetrisno, Laqif A. Synergistic therapeutic approach for hemorrhoids: integrating mesenchymal stem cells with diosmin-hesperidin to target tissue edema and inflammation. Arch Med Sci 2024; 20:1556-1566. [PMID: 39649264 PMCID: PMC11623161 DOI: 10.5114/aoms/183465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have promising regenerative properties in tissue repair and anti-inflammatory responses. This study aimed to investigate the effects of MSCs and their combination with micronized purified flavonoid fraction (MPFF) in a croton oil-induced hemorrhoids model on tissue edema, inflammation, and underlying molecular mechanisms. Material and methods MSCs were isolated and characterized for their adherence, differentiation capacity, and immunophenotyping. Croton oil-induced hemorrhoid mouse models were established to assess tissue edema, inflammation, tumor necrosis factor (TNF-α) expression, transforming growth factor-β (TGF-β) expression, collagen ratio, and MMP-9 activity. The effects of MSCs and their combination with MPFF (diosmin-hesperidin) were evaluated through histological examinations, western blot analysis, and gelatin zymography. Results Characterization confirmed the MSCs' plastic adherence, osteogenic differentiation potential, and immunophenotype (positive for CD90 and CD29, negative for CD45 and CD31). Treatment with MSCs alone or in combination with MPFF significantly reduced tissue edema, inflammation, TNF-α expression, and MMP-9 activity. Additionally, MSCs increased TGF-β expression, and collagen type I/III ratio, and accelerated wound healing by resolving inflammation. Conclusions These findings suggest that MSCs play a crucial role in modulating TNF-α, TGF-β, collagen remodeling, and MMP-9 activity, highlighting their promising role in hemorrhoid treatment and wound healing processes. Further research is warranted to fully elucidate the intricate mechanisms and optimize MSC-based therapies for clinical applications in hemorrhoidal disease management.
Collapse
Affiliation(s)
- M. Hidayat Budi Kusumo
- Doctoral program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia
| | - Adi Prayitno
- Doctoral program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Oral and Maxillofacial Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Soetrisno
- Doctoral program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Abdurahman Laqif
- Doctoral program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Obstetrics and Gynaecology, Moewardi General Hospital, Surakarta, Indonesia
| |
Collapse
|
12
|
Kim SH, Shin HL, Son TH, Lim SA, Kim D, Yoon JH, Choi H, Kim HG, Choi SW. Quercus glauca Acorn Seed Coat Extract Promotes Wound Re-Epithelialization by Facilitating Fibroblast Migration and Inhibiting Dermal Inflammation. BIOLOGY 2024; 13:775. [PMID: 39452084 PMCID: PMC11505045 DOI: 10.3390/biology13100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of Quercus glauca in promoting wound healing has not been thoroughly explored. Q. glauca is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of Quercus glauca acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H2O2. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Tae Hyun Son
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - So-An Lim
- Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Jun-Hyuck Yoon
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea;
| | - Hwan-Gyu Kim
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| |
Collapse
|
13
|
Bakadia BM, Zheng R, Qaed Ahmed AA, Shi Z, Babidi BL, Sun T, Li Y, Yang G. Teicoplanin-Decorated Reduced Graphene Oxide Incorporated Silk Protein Hybrid Hydrogel for Accelerating Infectious Diabetic Wound Healing and Preventing Diabetic Foot Osteomyelitis. Adv Healthc Mater 2024; 13:e2304572. [PMID: 38656754 DOI: 10.1002/adhm.202304572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Developing hybrid hydrogel dressings with anti-inflammatory, antioxidant, angiogenetic, and antibiofilm activities with higher bone tissue penetrability to accelerate diabetic wound healing and prevent diabetic foot osteomyelitis (DFO) is highly desirable in managing diabetic wounds. Herein, the glycopeptide teicoplanin is used for the first time as a green reductant to chemically reduce graphene oxide (GO). The resulting teicoplanin-decorated reduced graphene oxide (rGO) is incorporated into a mixture of silk proteins (SP) and crosslinked with genipin to yield a physicochemically crosslinked rGO-SP hybrid hydrogel. This hybrid hydrogel exhibits high porosity, self-healing, shear-induced thinning, increased cell proliferation and migration, and mechanical properties suitable for tissue engineering. Moreover, the hybrid hydrogel eradicates bacterial biofilms with a high penetrability index in agar and hydroxyapatite disks covered with biofilms, mimicking bone tissue. In vivo, the hybrid hydrogel accelerates the healing of noninfected wounds in a diabetic rat and infected wounds in a diabetic mouse by upregulating anti-inflammatory cytokines and downregulating matrix metalloproteinase-9, promoting M2 macrophage polarization and angiogenesis. The implantation of hybrid hydrogel into the infected site of mouse tibia improves bone regeneration. Hence, the rGO-SP hybrid hydrogel can be a promising wound dressing for treating infectious diabetic wounds, providing a further advantage in preventing DFO.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100, Italy
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bakamona Lyna Babidi
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, 4748, Democratic Republic of the Congo
| | - Tun Sun
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Duan S, Ding Z, Liu C, Wang X, Dai E. Icariin suppresses nephrotic syndrome by inhibiting pyroptosis and epithelial-to-mesenchymal transition. PLoS One 2024; 19:e0298353. [PMID: 38995910 PMCID: PMC11244770 DOI: 10.1371/journal.pone.0298353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2024] [Indexed: 07/14/2024] Open
Abstract
CONTEXT Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1β. Notably, treatment with icariin also inhibited the levels of TGF-β, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.
Collapse
Affiliation(s)
- Shuwen Duan
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhaoran Ding
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Can Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaohui Wang
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
Enayati S, Halabian R, Saffarian P, Aghamollaei H, Saeedi P. Nisin-preconditioned mesenchymal stem cells combatting nosocomial Pseudomonas infections. Regen Ther 2024; 26:161-169. [PMID: 38911027 PMCID: PMC11192785 DOI: 10.1016/j.reth.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background Nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa are a considerable public health threat, requiring innovative therapeutic approaches. Objectives This study explored preconditioning mesenchymal stem cells (MSCs) with the antimicrobial peptide Nisin to enhance their antibacterial properties while maintaining regenerative capacity. Methods Human MSCs were preconditioned with varying concentrations of Nisin (0.1-1000 IU/mL) to determine an optimal dose. MSCs preconditioned with Nisin were characterized using microscopy, flow cytometry, gene expression analysis, and functional assays. The effects of preconditioning on the viability, phenotype, differentiation capacity, antimicrobial peptide expression, and antibacterial activity of MSCs against Pseudomonas aeruginosa were tested in vitro. The therapeutic efficacy was evaluated by topically applying conditioned media from Nisin-preconditioned versus control MSCs to infected wounds in a rat model, assessing bacterial burden, healing, host response, and survival. Results An optimal Nisin dose of 500 IU/mL was identified, which increased MSC antibacterial gene expression and secretome activity without compromising viability or stemness. Nisin-preconditioned MSCs showed upregulated expression of LL37 and hepcidin. Conditioned media from Nisin-preconditioned MSCs exhibited about 4-fold more inhibition of P. aeruginosa growth compared to non-preconditioned MSCs. In the wound infection model, the secretome of Nisin-preconditioned MSCs suppressed bacterial load, accelerated wound closure, modulated inflammation, and improved survival compared to standard MSC treatments. Conclusion This study explores the effect of preconditioning MSCs with the antimicrobial peptide Nisin on enhancing their antibacterial properties while maintaining regenerative capacity. Secreted factors from Nisin-preconditioned MSCs have the potential to attenuate infections and promote healing in vivo. The approach holds translational promise for managing antibiotic-resistant infections and warrants further development. Preconditioned MSCs with Nisin may offer innovative, multifaceted therapies for combating nosocomial pathogens and promoting tissue regeneration.
Collapse
Affiliation(s)
- Sara Enayati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences Tehran, Iran
| |
Collapse
|
16
|
Martorana A, Lenzuni M, Contardi M, Palumbo FS, Cataldo S, Pettignano A, Catania V, Schillaci D, Summa M, Athanassiou A, Fiorica C, Bertorelli R, Pitarresi G. Schiff Base-Based Hydrogel Embedded with In Situ Generated Silver Nanoparticles Capped by a Hyaluronic Acid-Diethylenetriamine Derivative for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603548 DOI: 10.1021/acsami.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Fabio S Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Cataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Calogero Fiorica
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
17
|
Robinson CJ, Thiagarajan L, Maynard R, Aruketty M, Herrera J, Dingle L, Reid A, Wong J, Cao H, Dooley J, Liston A, Müllhaupt D, Hiebert P, Hiebert H, Kurinna S. Release of miR-29 Target Laminin C2 Improves Skin Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:195-208. [PMID: 37981221 DOI: 10.1016/j.ajpath.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.
Collapse
Affiliation(s)
- Connor J Robinson
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca Maynard
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maneesha Aruketty
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jeremy Herrera
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lewis Dingle
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam Reid
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Heng Cao
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James Dooley
- Center for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium; Department of Microbiology and Immunology, Katholieke Universiteit-University of Leuven, Leuven, Belgium; Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Adrian Liston
- Center for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium; Department of Microbiology and Immunology, Katholieke Universiteit-University of Leuven, Leuven, Belgium; Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Daniela Müllhaupt
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Hayley Hiebert
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
18
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Lin X, Lai Y. Scarring Skin: Mechanisms and Therapies. Int J Mol Sci 2024; 25:1458. [PMID: 38338767 PMCID: PMC10855152 DOI: 10.3390/ijms25031458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Skin injury always results in fibrotic, non-functional scars in adults. Although multiple factors are well-known contributors to scar formation, the precise underlying mechanisms remain elusive. This review aims to elucidate the intricacies of the wound healing process, summarize the known factors driving skin cells in wounds toward a scarring fate, and particularly to discuss the impact of fibroblast heterogeneity on scar formation. To the end, we explore potential therapeutic interventions used in the treatment of scarring wounds.
Collapse
Affiliation(s)
- Xinye Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Amansyah F, Budu B, Achmad MH, Daud NMAS, Putra A, Massi MN, Bukhari A, Hardjo M, Parewangi L, Patellongi I. Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Promotes Liver Regeneration and Anti-Fibrotic Effect in Liver Fibrosis Animal Model. Pak J Biol Sci 2024; 27:18-26. [PMID: 38413394 DOI: 10.3923/pjbs.2024.18.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
<b>Background and Objective:</b> Liver fibrosis (LF) is a most common pathological process characterized by the activation of hepatocytes leading to the accumulation of extracellular matrix (ECM). Hypoxia precondition treated in MSCs (H-MSCs) could enhance their immunomodulatory and regeneration capability, through expressing robust anti-inflammatory cytokines and growth factors, known as H-MSCs secretome (SH-MSCs) that are critical for the improvement of liver fibrosis. However, the study regarding the efficacy and mechanism of action of SH-MSCs in ameliorating liver fibrosis is still inconclusive. In this study, the therapeutic potential and underlying mechanism for SH-MSCs in the treatment of liver fibrosis were investigated. <b>Materials and Methods:</b> A rat model with liver fibrosis induced by CCl<sub>4</sub> was created and maintained for 8 weeks. The rats received intravenous doses of SH-MSCs and secretome derived from normoxia MSCs (SN-MSCs), filtered using a tangential flow filtration (TFF) system with different molecular weight cut-off categories, both at a dosage of 0.5 mL. The ELISA assay was employed to examine the cytokines and growth factors present in both SH-MSCs and SN-MSCs. On the ninth day, the rats were euthanized and liver tissues were collected for subsequent histological examination and analysis of mRNA expression. <b>Results:</b> The ELISA test revealed that SH-MSCs exhibited higher levels of VEGF, PDGF, bFGF, IL-10, TGF-β and IL-6 compared to SN-MSCs. <i>In vivo</i>, administration of SH-MSCs notably decreased mortality rates. It also demonstrated a reduction in liver fibrosis, collagen fiber areas, α-SMA positive staining and relative mRNA expression of TGF-β. Conversely, SN-MSCs also contributed to liver fibrosis improvement, although SH-MSCs demonstrated more favorable outcomes. <b>Conclusion:</b> Current findings suggested that SH-MSCs could improve CCl<sub>4</sub>-induced liver fibrosis and decrease α-SMA and TGF-β expression.
Collapse
|
21
|
Las Heras K, Garcia-Orue I, Aguirre JJ, de la Caba K, Guerrero P, Igartua M, Santos-Vizcaino E, Hernandez RM. Soy protein/β-chitin sponge-like scaffolds laden with human mesenchymal stromal cells from hair follicle or adipose tissue promote diabetic chronic wound healing. BIOMATERIALS ADVANCES 2023; 155:213682. [PMID: 37925826 DOI: 10.1016/j.bioadv.2023.213682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity. Thus, in this work, we leveraged and compared the therapeutic properties of MSCs derived from both adipose tissue and hair follicle, which we combined with sponge-like scaffolds (SLS) made of valorized soy protein and β-chitin. In this regard, the combination of these cells with biomaterials permitted us to obtain a multifunctional therapy that allowed high cell retention and growing rates while maintaining adequate cell-viability for several days. Furthermore, this combined therapy demonstrated to increase fibroblasts and keratinocytes migration, promote human umbilical vein endothelial cells angiogenesis and protect fibroblasts from highly proteolytic environments. Finally, this combined therapy demonstrated to be highly effective in reducing wound healing time in vivo with only one treatment change during all the experimental procedure, also promoting a more functional and native-like healed skin.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jose Javier Aguirre
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, Pathological Anatomy Service, Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
22
|
Yilmaz F, Ilgen O, Mankan A, Yilmaz B, Kurt S. The effects of berberine on ischemia-reperfusion injuries in an experimental model of ovarian torsion. Clin Exp Reprod Med 2023; 50:292-298. [PMID: 37995758 PMCID: PMC10711249 DOI: 10.5653/cerm.2023.06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Ovarian torsion is a gynecological disorder that causes ischemia-reperfusion injuries in the ovary. Our study investigated berberine's short- and long-term effects on ovarian ischemia-reperfusion injuries. METHODS This study included 28 Wistar albino female rats weighing 180 to 220 g, which were divided into four groups: sham (S), torsion/detorsion (T/D), torsion/ detorsion+single dose berberine (T/D+Bb), and torsion/detorsion+15 days berberine (T/D+15Bb). The torsion and detorsion model was applied in all non-sham groups. In the T/D+Bb group, a single dose of berberine was administered, while in the T/D+15Bb group, berberine was administered over a period of 15 days. After the rats were euthanized, their ovaries were excised. The left ovaries were used for histopathologic evaluation, which included ovarian injury scoring and follicle count, while the right ovaries were used for biochemical analyses (tissue transforming growth factor-β [TGF-β] and alpha-smooth muscle actin [α-SMA] levels). RESULTS The histopathologic evaluation scores for the ovaries were significantly lower in the T/D+B group (p<0.05) and the T/D+15B group (p<0.005) than in the T/D group. The follicle counts in the T/D group were lower than those in both the sham and treated groups (p<0.005). The TGF-β levels were significantly lower in the T/D+15B group (p<0.005), whereas the α-SMA levels did not show a significant difference. CONCLUSION Both short- and long-term berberine use could potentially have therapeutic effects on ovarian torsion. Long-term berberine use exhibited anti-inflammatory effects by reducing TGF-β levels, thereby preventing ischemia-reperfusion injuries. Therefore, we suggest that long-term berberine use could be beneficial for ovarian torsion.
Collapse
Affiliation(s)
- Filiz Yilmaz
- Department of Histology and Embryology, Hitit University, Erol Olcok Research and Training Hospital, IVF Center, Corum, Turkey
| | - Orkun Ilgen
- Department of Obstetrics and Gynecology, Erzurum Research and Training Hospital, Erzurum, Turkey
| | - Alper Mankan
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Bayram Yilmaz
- Pathology Department, Training and Research Hospital, Hitit University, Corum, Turkey
| | - Sefa Kurt
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
23
|
Patel H, Pundkar A, Shrivastava S, Chandanwale R, Jaiswal AM. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus 2023; 15:e48943. [PMID: 38106716 PMCID: PMC10725573 DOI: 10.7759/cureus.48943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Platelet-rich plasma (PRP) activation is emerging as a promising and multifaceted tool for accelerating skin wound healing. This review extensively examines PRP's role in wound healing, focusing on its composition, mechanisms of action, activation methods, and clinical applications. PRP's potential to enhance both chronic and acute wound healing and its applications in cosmetic and aesthetic procedures are explored. Furthermore, this review investigates safety concerns, including adverse reactions, infection risks, and long-term safety implications. Looking to the future, emerging technologies, combination therapies, personalized medicine approaches, and regulatory developments are discussed, pointing towards an important and transformative era in wound healing and regenerative medicine. With its wide-ranging implications for healthcare, PRP activation has the potential to become a ubiquitous and essential therapeutic option, improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Hardik Patel
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aditya Pundkar
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sandeep Shrivastava
- Orthopedic Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rohan Chandanwale
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Ankit M Jaiswal
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
24
|
Hodge JG, Robinson JL, Mellott AJ. Mesenchymal Stem Cell Extracellular Vesicles from Tissue-Mimetic System Enhance Epidermal Regeneration via Formation of Migratory Cell Sheets. Tissue Eng Regen Med 2023; 20:993-1013. [PMID: 37515738 PMCID: PMC10519905 DOI: 10.1007/s13770-023-00565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g., growth factors, exosomes, reactive oxygen species) may be driving epithelialization. METHODS A novel tissue-mimetic 3D hydrogel system was utilized to enhance the retainment of a more regenerative ASC phenotype and highlight the functional secretome differences between 2D and 3D. Subsequently, the ASC-secretome was stratified by molecular weight and the presence/absence of extracellular vesicles (EVs). The ASC-secretome fractions were then evaluated to assess for the capacity to augment specific keratinocyte activities. RESULTS Culture of ASCs within the tissue-mimetic system enhanced protein secretion ~ 50%, exclusively coming from the > 100 kDa fraction. The ASC-secretome ability to modulate epithelialization functions, including migration, proliferation, differentiation, and morphology, resided within the "> 100 kDa" fraction, with the 3D ASC-secretome providing the greatest improvement. 3D ASC EV secretion was enhanced two-fold and exhibited dose-dependent effects on epidermal regeneration. Notably, ASC-EVs induced morphological changes in keratinocytes reminiscent of native regeneration, including formation of stratified cell sheets. However, only 3D-EVs promoted collective cell sheet migration and an epithelial-to-mesenchymal-like transition in keratinocytes, whereas 2D-EVs contained an anti-migratory stimulus. CONCLUSION This study demonstrates how critical the culture environment is on influencing ASC-secretome regenerative capabilities. Additionally, the critical role of EVs in modulating epidermal regeneration is revealed and their translatability for future clinical therapies is discussed.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA
| | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA.
- Ronawk Inc., Olathe, KS, USA.
| |
Collapse
|
25
|
Ma Z, Shen P, Xu X, Li W, Li Y. Role of alpha smooth muscle actin in odontogenic differentiation of dental pulp stem cells. Eur J Oral Sci 2023; 131:e12956. [PMID: 37849216 DOI: 10.1111/eos.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Pulpotomy is an effective treatment for retaining vital pulp after pulp exposure caused by caries removal and/or trauma. The expression of alpha smooth muscle actin (α-SMA) is increased during the wound-healing process, and α-SMA-positive fibroblasts accelerate tissue repair. However, it remains largely unknown whether α-SMA-positive fibroblasts influence pulpal repair. In this study, we established an experimental rat pulpotomy model and found that the expression of α-SMA was increased in dental pulp after pulpotomy relative to that in normal dental pulp. In vitro results showed that the expression of α-SMA was increased during the induction of odontogenic differentiation in dental pulp stem cells (DPSCs) compared with untreated DPSCs. Moreover, α-SMA overexpression promoted the odontogenic differentiation of DPSCs via increasing mitochondrial function. Mechanistically, α-SMA overexpression activated the mammalian target of rapamycin (mTOR) signaling pathway. Inhibition of the mTOR signaling pathway by rapamycin decreased the mitochondrial function in α-SMA-overexpressing DPSCs and suppressed the odontogenic differentiation of DPSCs. Furthermore, we found that α-SMA overexpression increased the secretion of transforming growth factor beta-1 (TGF-β1). In sum, our present study demonstrates a novel mechanism by which α-SMA promotes odontogenic differentiation of DPSCs by increasing mitochondrial respiratory activity via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Sazli BI, Lindarto D, Hasan R, Putra A, Pranoto A, Sembiring RJ, Ilyas S, Syafril S. Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Enhance Angiogenesis in Diabetic Rats with Peripheral Artery Disease. Med Arch 2023; 77:90-96. [PMID: 37260802 PMCID: PMC10227841 DOI: 10.5455/medarh.2023.77.90-96] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 09/29/2023] Open
Abstract
Background Lower limb peripheral artery disease (PAD) is the main risk of diabetes mellitus which result to high mortality rate. Approximately, 50% of patients who receive several treatments have passed away or lost limbs at a year's follow-up. Secretome of hypoxia mesenchymal stem cells (S-MSCs) contains several active soluble molecules from hypoxia MSCs (H-MSCs) that capable inducing anti-inflammatory and vascular regeneration in PAD. Objective In this study, we investigated the therapeutic potential of S-MSCs in improving dynamic function and angiogenesis of PAD diabetic rats. Methods The PAD was established by the incision from the groin to the inner thigh and distal ligation of femoral arteries in rats with diabetes. Rats were administered with 200 µL and 400 µL S-MSCs that successfully filtrated using tangential flow filtration (TFF) system based on various molecular weight cut-off categories intravenously. ELISA assay was used to analyze the cytokines and growth factors contained in S-MSCs. Tarlov score were examined at day 1, 3, 5, 7, 10 and 14. The rats were sacrificed at day 14 and muscle tissues were collected for immunohistochemistry (IHC) and gene expression analysis. Results ELISA assay showed that S-MSCs provides abundant level of VEGF, PDGF, bFGF, IL-10 and TGFβ. In vivo administration of S-MSCs remarkably enhanced the Tarlov score. S-MSCs improved angiogenesis through enhancing VEGF gene expression and significantly increasing CD31 positive area in muscle tissue of PAD diabetic rats. Conclusion Our findings suggest that S-MSCs could improves dynamic function and angiogenesis in PAD diabetic rats.
Collapse
Affiliation(s)
- Brama Ihsan Sazli
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dharma Lindarto
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Refli Hasan
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
- Department of Postgraduate Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | - Agung Pranoto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rosita Juwita Sembiring
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Santi Syafril
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
27
|
Zhang S, Pan Y, Mao Z, Zhang J, Zhang K, Yin J, Wang C. Hyaluronic acid- g-lipoic acid granular gel for promoting diabetic wound healing. Bioeng Transl Med 2023; 8:e10402. [PMID: 36925704 PMCID: PMC10013829 DOI: 10.1002/btm2.10402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetic patients are prone to developing chronic inflammation after trauma and have persistent nonhealing wounds. Reactive oxygen species (ROS) and recurrent bacterial infections at the site of long-term wounds also further delay skin wound healing and tissue regeneration. In this study, a granular gel (which exhibits ROS scavenging and antibacterial properties) is fabricated based on hyaluronic acid-g-lipoic acid (HA-LA). Briefly, HA-LA is synthesized to fabricate HA-LA microgels, which are further assembled by Ag+ via its coordination effect with disulfide in dithiolane to form a granular gel. The extrudable bulk granular gel possesses a shear-thinning feature and is immediately restored to a solid state after extrusion, and this can be easily applied to the whole wound area. Therefore, the grafted LA not only allows for the construction of the granular gel but also removes excess ROS from the microenvironment. Additionally, the presence of Ag+ realizes the assembly of microgels and has antibacterial effects. In vivo experiments show that the HA-LA granular gel eliminates excessive ROS at the wound site and up-regulates the secretion of reparative growth factors, thus, accelerating common and diabetic wound healing significantly. Therefore, the ROS-scavenging granular gel that can be applied to the wound surface with chronic inflammation demonstrates strong clinical utility.
Collapse
Affiliation(s)
- Shixi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yuqing Pan
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Zhiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Jiahui Zhang
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
28
|
The Fabrication of Gelatin-Elastin-Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute. Polymers (Basel) 2023; 15:polym15030779. [PMID: 36772084 PMCID: PMC9920652 DOI: 10.3390/polym15030779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, elastin, and cellulose nanocrystals (CNC) and crosslinked with genipin. The scaffolds were fabricated using the freeze-drying method. The composite scaffolds were composed of different concentrations of CNC, whereas scaffolds made of pure gelatin and a gelatin-elastin mixture served as controls. The physicochemical and mechanical properties of the scaffolds, and their cellular biocompatibility with human dermal fibroblasts (HDF), were evaluated. The composite scaffolds demonstrated higher porosity and swelling capacity and improved enzymatic resistance compared to the controls. Although the group with 0.5% (w/v) CNC recorded the highest pore size homogeneity, the diameters of most of the pores in the composite scaffolds ranged from 100 to 200 μm, which is sufficient for cell migration. Tensile strength analysis revealed that increasing the CNC concentration reduced the scaffolds' stiffness. Chemical analyses revealed that despite chemical and structural alterations, both elastin and CNC were integrated into the gelatin scaffold. HDF cultured on the scaffolds expressed collagen type I and α-SMA proteins, indicating the scaffolds' biocompatibility with HDF. Overall, the addition of elastin and CNC improved the properties of gelatin-based scaffolds. The composite scaffolds are promising candidates for an acellular skin substitute.
Collapse
|
29
|
Zukhiroh Z, Putra A, Chodidjah C, Sumarawati T, Subchan P, Trisnadi S, Hidayah N, Amalina ND. Effect of Secretome-Hypoxia Mesenchymal Stem Cells on Regulating SOD and MMP-1 mRNA Expressions in Skin Hyperpigmentation Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing hyperpigmentation. MSC secretome contains bioactive soluble molecules such as cytokines and growth factors that can accelerate skin regeneration. However, the molecular role of the secretome in hyperpigmentation is still unclear.
AIM: This study aimed to determine the effect of secretome hypoxia mesenchymal stem cells (S-HMSC) gel on the expression of superoxide dismutase (SOD) and matrix metalloproteinases (MMP-1) genes in skin tissue of hyperpigmented rats induced by UVB light exposure.
MATERIALS AND METHODS: Experimental research with post-test only control group. The control, base gel, T1 and T2 groups were UVB irradiated 6 times in 14 days at 302 nm with an minimal erythema dose of 390 mJ/cm2, respectively, while sham group did not receive UVB exposure. T1 was given 100 uL of S-HMSC gel and T2 was given 200 uL of S-HMSC gel every day for 14 days, while base gel received base gel. On day 15, skin tissue was isolated and analyzed for SOD and MMP-1 expression using qRT-PCR.
RESULTS: The relative expression of the SOD gene in the treatment group (P1 = 0.47 ± 0.20, P2 = 1.22 ± 0.47) increased with increasing dose compared to the control group (UVB = 0.05 ± 0.01, Base gel = 0.05 ± 0.02). The relative expression of the MMP-1 gene in the treatment group (T1 = 5.82 ± 1.16, T2 = 2.86 ± 1.57) decreased with increasing dose compared to the control group (Control = 10.10 ± 2.31, and Base gel = 9.55 ± 1.29).
CONCLUSION: Administration of S-HMSC gel can increase SOD gene expression and decrease MMP-1 gene expression in skin tissue of hyperpigmented rats model induced by UVB light.
Collapse
|
30
|
Khan I, Siddiqui MN, Jameel F, Qazi REM, Salim A, Aslam S, Zaidi MB. Potential of stem cell seeded three-dimensional scaffold for regeneration of full-thickness skin wounds. Interface Focus 2022; 12:20220017. [PMID: 35996740 PMCID: PMC9372646 DOI: 10.1098/rsfs.2022.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022] Open
Abstract
Hypoxic wounds are tough to heal and are associated with chronicity, causing major healthcare burden. Available treatment options offer only limited success for accelerated and scarless healing. Traditional skin substitutes are widely used to improve wound healing, however, they lack proper vascularization. Mesenchymal stem cells (MSCs) offer improved wound healing; however, their poor retention, survival and adherence at the wound site negatively affect their therapeutic potential. The aim of this study is to enhance skin regeneration in a rat model of full-thickness dermal wound by transplanting genetically modified MSCs seeded on a three-dimensional collagen scaffold. Rat bone marrow MSCs were efficiently incorporated in the acellular collagen scaffold. Skin tissues with transplanted subcutaneous scaffolds were histologically analysed, while angiogenesis was assessed both at gene and protein levels. Our findings demonstrated that three-dimensional collagen scaffolds play a potential role in the survival and adherence of stem cells at the wound site, while modification of MSCs with jagged one gene provides a conducive environment for wound regeneration with improved proliferation, reduced inflammation and enhanced vasculogenesis. The results of this study represent an advanced targeted approach having the potential to be translated in clinical settings for targeted personalized therapy.
Collapse
Affiliation(s)
- Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Naz Siddiqui
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fatima Jameel
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida-e-Maria Qazi
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazmeen Aslam
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Midhat Batool Zaidi
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
31
|
Takaya K, Aramaki-Hattori N, Sakai S, Okabe K, Asou T, Kishi K. Fibroblast Growth Factor 7 Suppresses Fibrosis and Promotes Epithelialization during Wound Healing in Mouse Fetuses. Int J Mol Sci 2022; 23:ijms23137087. [PMID: 35806092 PMCID: PMC9266578 DOI: 10.3390/ijms23137087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Adult mammalian wounds leave visible scars, whereas skin wounds in developing mouse fetuses are scarless until a certain point in development when complete regeneration occurs, including the structure of the dermis and skin appendages. Analysis of the molecular mechanisms at this transition will provide clues for achieving scarless wound healing. The fibroblast growth factor (FGF) family is a key regulator of inflammation and fibrosis during wound healing. We aimed to determine the expression and role of FGF family members in fetal wound healing. ICR mouse fetuses were surgically wounded at embryonic day 13 (E13), E15, and E17. Expression of FGF family members and FGF receptor (FGFR) in tissue samples from these fetuses was evaluated using in situ hybridization and reverse transcription-quantitative polymerase chain reaction. Fgfr1 was downregulated in E15 and E17 wounds, and its ligand Fgf7 was upregulated in E13 and downregulated in E15 and E17. Recombinant FGF7 administration in E15 wounds suppressed fibrosis and promoted epithelialization at the wound site. Therefore, the expression level of Fgf7 may correlate with scar formation in late mouse embryos, and external administration of FGF7 may represent a therapeutic option to suppress fibrosis and reduce scarring.
Collapse
Affiliation(s)
- Kento Takaya
- Correspondence: ; Tel.: +81-3-5363-3814; Fax: +81-3-3352-1054
| | | | | | | | | | | |
Collapse
|
32
|
Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm 2022; 19:1294-1308. [PMID: 35294195 DOI: 10.1021/acs.molpharmaceut.1c00669] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic wounds are one of the debilitating complications that affect up to 20% of diabetic patients. Despite the advent of extensive therapies, the recovery rate is unsatisfactory, and approximately, 25% of patients undergo amputation, thereby demanding alternative therapeutic strategies. On the basis of the individual therapeutic roles of the miR-155 inhibitor and mesenchymal stem cells (MSC)-derived exosomes, we conjectured that the combination of the miR-155 inhibitor and MSC-derived exosomes would have synergy in diabetic wound healing. Herein, miR-155-inhibitor-loaded MSC-derived exosomes showed synergistic effects in keratinocyte migration, restoration of FGF-7 levels, and anti-inflammatory action, leading to accelerated wound healing mediated by negative regulation of miR-155, using an in vitro co-culture model and in vivo mouse model of the diabetic wound. Furthermore, treatment with miR-155-inhibitor-loaded MSC-derived exosomes led to enhanced collagen deposition, angiogenesis, and re-epithelialization in diabetic wounds. This study revealed the therapeutic potential of miR-155-inhibitor-loaded MSC-derived exosomes in diabetic wound healing and opened the doors for encapsulating miRNAs along with antibiotics within the MSC-derived exosomes toward improved management of chronic, nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Palak Bhat
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Mukund Mali
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| |
Collapse
|
33
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
34
|
Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE. Melatonin pre-treated bone marrow derived-mesenchymal stem cells prompt wound healing in rat models. Biomed Pharmacother 2022; 145:112473. [PMID: 34861635 DOI: 10.1016/j.biopha.2021.112473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
Bone marrow derived-mesenchymal stem cells (BMSCs)-based therapy is an outstanding candidate for cutaneous wound healing. Melatonin (MEL) has been reported for its anti-inflammatory as well as tissue regenerative properties. Existing work aimed to explore the potential healing power of BMSCs pre-treated with MEL in a skin wound model. Adult rats were allocated into control, PIO, BMSCs (1 × 105 cells), and MEL/BMSCs groups. On the 21 days post-wounding, tissues were sampled for analysis. The results demonstrated that compared to the control group, MEL/BMSCs therapy induced noticeable decline in wound area and elevated rate of wound retraction. Furthermore, marked increases in tissue hydroxyproline, as well as tissue content and gene expression level of vascular endothelial growth factor in MEL/BMSCs treated-wounded animals. Compared to the untreated control group, marked increases were found in antioxidant enzymatic activities together with elevated GSH levels in wounded tissues after MEL/BMSCs treatment. Moreover, therapeutically handled wounds with MEL/BMSCs revealed low levels of MDA, NO and protein carbonyls. Combined therapy with MEL/BMSCs relieved the inflammation witnessed by decreasing IL-1β, TNF-α and NF-κB levels in wounded tissues. Furthermore, noteworthy rises in levels of TGF-β and gene expression of α-SMA were noticed after MEL/BMSCs application that reveals their anti-scarring properties. Histologically, noticeable improvement in histopathological skin lesions in wound area and elevated the collagen synthesis and deposition. Collectively, the obtained data depict that the pre-treatment of BMSCs with MEL could potentially be a successful strategy for scaling-up the wound healing outcomes more than using BMSCs monotherapy in rat models.
Collapse
Affiliation(s)
- Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asma S Al-Gebaly
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Al-Qahtani
- Department of Forensic Sciences, College of Forensic Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|