1
|
Aguilar-Perez DA, Urbina-Mendez CM, Maldonado-Gallegos B, Castillo-Cruz ODJ, Aguilar-Ayala FJ, Chuc-Gamboa MG, Vargas-Coronado RF, Cauich-Rodriguez JV. Mechanical Properties of Poly(Alkenoate) Cement Modified with Propolis as an Antiseptic. Polymers (Basel) 2023; 15:polym15071676. [PMID: 37050290 PMCID: PMC10096598 DOI: 10.3390/polym15071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Background: We assessed the effect of propolis on the antibacterial, mechanical, and adhesive properties of a commercial poly(alkenoate) cement. Methods: The cement was modified with various concentrations of propolis, and antibacterial assays were performed against S. mutans by both MTT assays and agar diffusion tests. The compressive, flexural, and adhesive properties were also evaluated. Results: the modified cement showed activity against S. mutans in both assays, although reductions in compressive (from 211.21 to 59.3 MPa) and flexural strength (from 11.1 to 6.2 MPa) were noted with the addition of propolis, while adhesive strength (shear bond strength and a novel pull-out method) showed a statistical difference (p < 0.05). Conclusion: the antiseptic potential of modified material against S. mutans will allow this material to be used in cases in which low mechanical resistance is required (in addition to its anti-inflammatory properties) when using atraumatic restorative techniques, especially in deep cavities.
Collapse
|
2
|
de Morais Sampaio GA, Lacerda-Santos R, Cavalcanti YW, Vieira GHA, Nonaka CFW, Alves PM. Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. Angle Orthod 2021; 91:522-527. [PMID: 33630071 DOI: 10.2319/083120-759.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the antimicrobial activity, mechanical properties, and fluoride release capacity of glass ionomer cement (GIC) used for cementing orthodontic bands and modified by ethanolic extract of red propolis (EERP) in different concentrations. MATERIALS AND METHODS Two orthodontic GICs containing EERP at 10%, 25%, and 50%, were used. The following assays were carried out: cell viability tests against Streptococcus mutans and Candida albicans, diametral tensile strength, compressive strength, shear bond strength, microhardness, and fluoride release capacity. The statistical analyses of the antimicrobial tests, fluoride release, diametral tensile strength, compressive strength, and microhardness were performed using two-way analysis of variance and Tukey test (P < .05). Shear bond strength data were analyzed using one-way analysis of variance followed by Tukey test (P < .05). RESULTS At the concentrations of 25% and 50%, EERP was shown to be a promising antimicrobial agent incorporated into GICs against C albicans (P < .001) and S mutans (P < .001). The fluoride release capacity of the GICs was not affected, and the EERP concentration of 25% was the one that least affected the mechanical properties of the cements (P > .05). CONCLUSIONS The GICs containing EERP at 25% showed a significant increase in their antimicrobial activity against S mutans and C albicans, while mechanical properties and fluoride release remained without significant changes.
Collapse
|
3
|
Zulhendri F, Felitti R, Fearnley J, Ravalia M. The use of propolis in dentistry, oral health, and medicine: A review. J Oral Biosci 2021; 63:23-34. [PMID: 33465498 DOI: 10.1016/j.job.2021.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Propolis is a resinous product that is collected from plants by bees to cover holes and crevices in their hives. Propolis has potent antibacterial, antiviral, anti-inflammatory, wound healing, and anticancer properties. Propolis has been used therapeutically by humans for centuries, including the treatment of dental caries and mouth infections. HIGHLIGHT This review article attempts to analyze the potential use of propolis in general dentistry and oral health management. CONCLUSION Propolis is potentially useful in dentistry and oral health management based on available in vitro, in vivo, and ex vivo studies, as well as human clinical trials.
Collapse
Affiliation(s)
| | - Rafael Felitti
- Oral Rehabilitation and Prosthodontics, Private Practice, Montevideo, Uruguay.
| | - James Fearnley
- Apiceutical Research Centre, NorthYorkshire, United Kingdom.
| | | |
Collapse
|
4
|
Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob Agents Chemother 2020; 64:AAC.00251-20. [PMID: 32540977 DOI: 10.1128/aac.00251-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/31/2020] [Indexed: 02/05/2023] Open
Abstract
Dental caries is the most common disease in the human mouth. Streptococcus mutans is the primary cariogenic bacterium. Propolis is a nontoxic natural product with a strong inhibitory effect on oral cariogenic bacteria. The polyphenol-rich extract from propolis inhibits S. mutans growth and biofilm formation, as well as the genes involved in virulence and adherence, through the inhibition of glucosyltransferases (GTF). However, because the chemical composition of propolis is highly variable and complex, the mechanism of its antimicrobial action and the active compound are controversial and not completely understood. Caffeic acid phenethyl ester (CAPE) is abundant in the polyphenolic compounds from propolis, and it has many pharmacological effects. In this study, we investigated the antibacterial effects of CAPE on common oral cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Actinomyces viscosus, and Lactobacillus acidophilus) and its effects on the biofilm-forming and cariogenic abilities of S. mutans CAPE shows remarkable antimicrobial activity against cariogenic bacteria. Moreover, CAPE also inhibits the formation of S. mutans biofilms and their metabolic activity in mature biofilms. Furthermore, CAPE can inhibit the key virulence factors of S. mutans associated with cariogenicity, including acid production, acid tolerance, and the bacterium's ability to produce extracellular polysaccharides (EPS), without affecting bacterial viability at subinhibitory levels. In conclusion, CAPE appears to be a new agent with anticariogenic potential, not only via inhibition of the growth of cariogenic bacteria.
Collapse
|
5
|
Asgharpour F, Moghadamnia AA, Zabihi E, Kazemi S, Ebrahimzadeh Namvar A, Gholinia H, Motallebnejad M, Nouri HR. Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines. Altern Ther Health Med 2019; 19:266. [PMID: 31601198 PMCID: PMC6788029 DOI: 10.1186/s12906-019-2677-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
Abstract
Background Propolis is a natural bee product with a wide range of biological activities that are related to its chemical composition. The present study investigated the quantification of quercetin (Q) in Ardabil ethanol extract of propolis (AEEP), and then compared its anti-bacterial, anti- biofilm and cytotoxic effects on cancer and normal cell lines. Method In the present study, the chemical composition of AEEP was determined through the high-performance liquid chromatography (HPLC). The AEEP and its main component, quercetin (Q), were evaluated in vitro against 57 oral streptococci by a broth micro-dilution method. The biofilm formation was assessed through the crystal violet staining and MTT assays. The impact of AEEP and Q anti-proliferative effect were evaluated on the fibroblast as normal and cancer cell lines (KB and A431). Results The Q concentration in the composition of AEEP was 6.9% of all its components. The findings indicated that the AEEP and Q were efficient against the cariogenic bacteria and were able to inhibit the S.mutans biofilm adherence at a sub-MIC concentration. Moreover, electron micrographs indicated the inhibition of biofilms compared to control biofilms. In addition, the AEEP and Q indicated a dose-dependent cytotoxic effect on A431 and KB cell lines. On the contrary, they had no cytotoxic effect on fibroblast cells. Conclusion The results indicated that the synergistic impact of main components of AEEP was related to the inhibition of the cancer cell proliferation, cariogenic bacteria and oral biofilm formation. It may play a promising role in the complementary medicine and, it is suggested to be used as food additives.
Collapse
|
6
|
Wassel MO, Sherief DI. Ion release and enamel remineralizing potential of miswak, propolis and chitosan nano-particles based dental varnishes. PEDIATRIC DENTAL JOURNAL 2019. [DOI: 10.1016/j.pdj.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Celerino de Moraes Porto IC, Chaves Cardoso de Almeida D, Vasconcelos Calheiros de Oliveira C G, Sampaio Donato TS, Moreira Nunes L, Gomes do Nascimento T, dos Santos Oliveira JM, Batista da Silva C, Barbosa dos Santos N, de Alencar e Silva Leite ML, Diniz Basílio-Júnior I, Braga Dornelas C, Barnabé Escodro P, da Silva Fonseca EJ, Umeko Kamiya R. Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent. Altern Ther Health Med 2018; 18:219. [PMID: 30021632 PMCID: PMC6052596 DOI: 10.1186/s12906-018-2281-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Propolis is a natural substance produced by bees and is known to have antimicrobial activity. Our aim was to evaluate the antimicrobial effect of micellar nanocomposites loaded with an ethyl acetate extract of Brazilian red propolis as a cavity cleaning agent and its influence on the color and microtensile bond strength (μTBS) of the dentin/resin interface. METHODS An ultra-performance liquid chromatography coupled with a diode array detector (UPLC-DAD) assay was used to determine the flavonoids and isoflavones present in an ethyl acetate extract of Brazilian red propolis (EARP) and micellar nanocomposites loaded with EARP (MNRP). The antimicrobial activity of EARP and MNRP was tested against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. One of the following experimental treatments was applied to etched dentin (phosphoric acid, 15 s): 5 μL of MNRP (RP3, 0.3%; RP6, 0.6%; or RP1, 1.0% w/v), placebo, and 2% chlorhexidine digluconate. Single Bond adhesive (3 M/ESPE) was applied and a 4-mm-thick resin crown (Z350XT, 3 M/ESPE) was built up. After 24 h, the teeth were sectioned into sticks for the μTBS test and scanning electron microscopy. Spectrophotometry according to the CIE L*a*b* chromatic space was used to evaluate the color. Data were analyzed using one-way ANOVA and the Tukey test or Kruskal-Wallis test and the same test for pairwise comparisons between the means (P < 0.05). RESULTS The UPLC-DAD assay identified the flavonoids liquiritigenin, pinobanksin, pinocembrin, and isoliquiritigenin and the isoflavonoids daidzein, formononetin, and biochanin A in the EARP and micellar nanocomposites. EARP and MNRP presented antimicrobial activity against the cariogenic bacteria Streptococcus mutans and Lactobacillus acidophilus, and for Candida albicans. ΔE values varied from 2.31 to 3.67 (P = 0.457). The mean μTBS for RP1 was significantly lower than for the other groups (P < 0.001). Dentin treated with RP1 showed the shortest resin tags followed by RP6 and RP3. CONCLUSIONS The EARP and (MNRP) showed antimicrobial activity for the main agents causing dental caries (Streptococcus mutans and Lactobacillus acidophilus) and for Candida albicans. MNRP at concentrations of 0.3 and 0.6% used as a cavity cleaner do not compromise the aesthetics or μTBS of the dentin/resin interface.
Collapse
|
8
|
Wassel MO, Khattab MA. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res 2017; 8:387-392. [PMID: 28560054 PMCID: PMC5443966 DOI: 10.1016/j.jare.2017.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022] Open
Abstract
Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans (S. mutans) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.
Collapse
Affiliation(s)
- Mariem O. Wassel
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, Cairo 1156, Egypt
| | - Mona A. Khattab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 1156, Egypt
| |
Collapse
|
9
|
Mohan PVMU, Uloopi KS, Vinay C, Rao RC. In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth. Contemp Clin Dent 2016; 7:45-50. [PMID: 27041900 PMCID: PMC4792055 DOI: 10.4103/0976-237x.177110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The survival of atraumatic restorative treatment (ART) restorations would be enhanced if near total elimination of cariogenic microorganisms could be done in the process of cavity cleaning before placing a restoration. Thus, use of disinfecting agents for achieving this goal could herald a new beginning in the field of contemporary dentistry. Aim: To assess and compare the cavity disinfection efficacy of APF gel, Brazilian Propolis, Diode Laser, and 2% chlorhexidine (CHX). Materials and Methods: The study was a randomized, single blinded, parallel grouped, active controlled trial. Eighty primary molars in 68 children with cavitated dentinal occlusal caries were randomly assigned into four groups (20 teeth each) Group I: APF gel; Group II: Propolis; Group III: Diode Laser, and Group IV: 2% CHX (control). After cavity preparation using ART procedure, dentinal samples collected before and after disinfection with respective agent of the group. These samples were subjected to microbiological evaluation, for total viable count (TVC) on blood agar, Streptococcus mutans on mutans-sanguis (MS) agar, and Lactobacilli (LB) on Rogosa agar. Results: Intragroup comparison (Wilcoxon signed rank test) showed significant reductions in TVC, MS, and LB counts in all the groups. Pairwise Mann–Whitney test showed APF gel had least bacterial reductions among the agents tested. Conclusion: This study illustrated the need for cavity disinfection. Diode Laser and Brazilian Propolis are equally effective as 2% CHX in cavity disinfection.
Collapse
Affiliation(s)
- P V M Uday Mohan
- Department of Pedodontics and Preventive Dentistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - K S Uloopi
- Department of Pedodontics and Preventive Dentistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - C Vinay
- Department of Pedodontics and Preventive Dentistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - R Chandrasekhar Rao
- Department of Pedodontics and Preventive Dentistry, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|