1
|
Ges Naranjo A, Viltres Cobas H, Kumar Gupta N, Rodríguez López K, Martínez Peña A, Sacasas D, Álvarez Brito R. 5-Fluorouracil uptake and release from pH-responsive nanogels: An experimental and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
3
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Nałęcz-Jawecki G, Drobniewska A, Sobczak M. Hydrogels Based on Poly(Ether-Ester)s as Highly Controlled 5-Fluorouracil Delivery Systems-Synthesis and Characterization. MATERIALS 2020; 14:ma14010098. [PMID: 33379370 PMCID: PMC7795999 DOI: 10.3390/ma14010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
A novel and promising hydrogel drug delivery system (DDS) capable of releasing 5‑fluorouracil (5-FU) in a prolonged and controlled manner was obtained using ε‑caprolactone‑poly(ethylene glycol) (CL-PEG) or rac‑lactide-poly(ethylene glycol) (rac‑LA-PEG) copolymers. Copolymers were synthesized via the ring-opening polymerization (ROP) process of cyclic monomers, ε‑caprolactone (CL) or rac-lactide (rac-LA), in the presence of zirconium(IV) octoate (Zr(Oct)4) and poly(ethylene glycol) 200 (PEG 200) as catalyst and initiator, respectively. Obtained triblock copolymers were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the structure and tacticity of the macromolecules were determined. The relationship between the copolymer structure and the reaction conditions was evaluated. The optimal conditions were specified as 140 °C and 24 h. In the next step, CL-PEG and rac-LA-PEG copolymers were chemically crosslinked using hexamethylene diisocyanate (HDI). Selected hydrogels were subjected to in vitro antitumor drug release studies, and the release data were analyzed using zero-order, first-order, and Korsmeyer-Peppas mathematical models. Controlled and prolonged (up to 432 h) 5-FU release profiles were observed for all examined hydrogels with first-order or zero-order kinetics. The drug release mechanism was generally denoted as non-Fickian transport.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (G.N.-J.); (A.D.)
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (G.N.-J.); (A.D.)
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
- Correspondence:
| |
Collapse
|
4
|
Eswaramma S, Reddy NS, Rao KSVK. Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: Development, swelling dynamics and drug release characteristics. Int J Biol Macromol 2017; 103:1162-1172. [PMID: 28576553 DOI: 10.1016/j.ijbiomac.2017.05.160] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 01/08/2023]
Abstract
Potential dual responsive hydrogel networks (PPAD) are fabricated from pectin, poly((2-dimethylamino)ethyl methacrylate)) and phosphate crosslinker bis[2-methacryloyloxy] ethyl phosphate (BMEP) by a simple free radical polymerization. These hydrogel networks are successfully utilized for encapsulation of an anti-cancer drug, 5-fluorouracil (5-FU) and also employed as versatile platforms for production of silver nanoparticles. Fabricated hydrogel networks and silver nanocomposites were characterized by FTIR, SEM, EDX, TEM, DLS, DSC, TGA and XRD. Different polymer network parameters such as MC¯, χ, ξ and υe and diffusion constant (D) were evaluated to assess the drug release profile. The 5FU loaded PPAD hydrogels were used to perform in vitro release studies in both gastric and intestinal conditions of GIT (pH 1.2 & pH 7.4) at two different temperatures (25 and 37°C). On the other hand various kinetic models (zero, first, Higuchi & Koresmeyer-Peppas) have also been employed to fit drug release profile. In addition, the antibacterial activity of PPAD silver nanocomposites were tested against four bacterial species Escherichia coli (-ve), Klebsiella pneumoniae (-ve), Bacillus cereus (+ve) and Staphylococcus aereus (+ve) using zone of inhibition test.
Collapse
Affiliation(s)
- S Eswaramma
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India
| | - N Sivagangi Reddy
- Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - K S V Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
5
|
Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, Abu N, Mohammed NE, Nordin N, Zamberi NR, Yeap SK. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci 2016; 480:146-158. [PMID: 27428851 DOI: 10.1016/j.jcis.2016.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023]
Abstract
In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.
Collapse
Affiliation(s)
- Ibrahim Birma Bwatanglang
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Faruq Mohammad
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Zubir Hussein
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Nurul Elyani Mohammed
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Eswaramma S, Krishna Rao KSV, Madhusudana Rao K. Diffusion and controlled release characteristics of pH-sensitive poly(2-(dimethyl amino)ethyl methacrylate-co-2-hydroxyethylacrylate) hydrogels. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1074910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|