1
|
Leśniak W, Bohush A, Maksymowicz M, Piwowarczyk C, Karolak NK, Jurewicz E, Filipek A. Involvement of CacyBP/SIP in differentiation and the immune response of HaCaT keratinocytes. Immunobiology 2023; 228:152385. [PMID: 37156124 DOI: 10.1016/j.imbio.2023.152385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
CacyBP/SIP is a multifunctional protein present in various cells and tissues. However, its expression and role in the epidermis has not been explored so far. In this work, using RT-qPCR, Western blot analysis and three-dimensional (3D) organotypic cultures of HaCaT keratinocytes we show that CacyBP/SIP is present in the epidermis. To investigate the possible role of CacyBP/SIP in keratinocytes we obtained CacyBP/SIP knockdown cells and studied the effect of CacyBP/SIP deficiency on their differentiation and response to viral infection. We found that CacyBP/SIP knockdown results in reduced expression of epidermal differentiation markers in both undifferentiated and differentiated HaCaT cells. Since epidermis is engaged in immune defense, the impact of CacyBP/SIP knockdown on this process was also analyzed. By applying RT-qPCR and Western blot it was found that poly(I:C), a synthetic analog of double-stranded RNA that mimics viral infection, stimulated the expression of genes involved in antiviral response, such as IFIT1, IFIT2 and OASL. Interestingly, following poly(I:C) stimulation, the level of expression of these genes was significantly lower in cells with CacyBP/SIP knockdown than control ones. Since the signaling pathway mediating cellular responses to viral infection involves, among others, the STAT1 transcription factor, we measured its activity using luciferase assay and found that it was lower in CacyBP/SIP knockdown HaCaT cells. Altogether, the presented results indicate that CacyBP/SIP promotes epidermal differentiation and might be involved in response of the skin cells to viral infection.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Maksymowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Cezary Piwowarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Natalia Katarzyna Karolak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Department of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Zheng H, Chen C. Downregulation of CacyBP by CRISPR/dCas9-KRAB Prevents Bladder Cancer Progression. Front Mol Biosci 2021; 8:692941. [PMID: 34179100 PMCID: PMC8226165 DOI: 10.3389/fmolb.2021.692941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BCa) is a leading cause of cancer-related death in the world. CacyBP is initially described as a binding partner of calcyclin and has been shown to be involved in a wide range of cellular processes, including cell differentiation, proliferation, protein ubiquitination, cytoskeletal dynamics and tumorigenesis. In the present study, we found that CacyBP expression was significantly upregulated in BCa tissues compared with adjacent normal tissues. Moreover, its expression was negatively correlated with overall survival time. Secondly, CacyBP had higher expressions in BCa cell lines than normal urothelial cells which was consistent with the results of BCa tissues. Finally, knockdown of CacyBP by CRIPSR-dCas9-KRAB in T24 and 5,637 BCa cells inhibited cell proliferation and migration by CCK-8 assay and scratch assay, and promoted apoptosis by caspase-3/ELISA. These data elucidate that CacyBP is an important oncogene contributing to malignant behavior of BCa and provide a potentially molecular target for treatment of BCa.
Collapse
Affiliation(s)
- Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chiheng Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Zhang Z, Chen C, Fang Y, Li S, Wang X, Sun L, Zhou G, Ye J. Development of a prognostic signature for esophageal cancer based on nine immune related genes. BMC Cancer 2021; 21:113. [PMID: 33541291 PMCID: PMC7860013 DOI: 10.1186/s12885-021-07813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Function of the immune system is correlated with the prognosis of the tumor. The effect of immune microenvironment on esophageal cancer (EC) development has not been fully investigated. Methods This study aimed to explore a prognostic model based on immune-related genes (IRGs) for EC. We obtained the RNA-seq dataset and clinical information of EC from the Cancer Genome Atlas (TCGA). Results We identified 247 upregulated IRGs and 56 downregulated IRGs. Pathway analysis revealed that the most differentially expressed IRGs were enriched in Cytokine-cytokine receptor interaction. We further screened 13 survival-related IRGs and constructed regulatory networks involving related transcription factors (TFs). Finally, a prognostic model was constructed with 9 IRGs (HSPA6, S100A12, CACYBP, NOS2, DKK1, OSM, STC2, NGPTL3 and NR2F2) by multivariate Cox regression analysis. The patients were classified into two subgroups with different outcomes. When adjusted with clinical factors, this model was verified as an independent predictor, which performed accurately in prognostic prediction. Next, M0 and M2 macrophages and activated mast cells were significantly enriched in high-risk group, while CD8 T cells and regulatory T cells (Tregs) were significantly enriched in low-risk group. Conclusions Prognosis related IRGs were identified and a prognostic signature for esophageal cancer based on nine IRGs was developed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07813-9.
Collapse
Affiliation(s)
- Zhi Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Cheng Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Ying Fang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Sheng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Xiaohua Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Lei Sun
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| | - Jinjun Ye
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
4
|
Cysteine Proteases from V. cundinamarcensis ( C. candamarcensis) Inhibit Melanoma Metastasis and Modulate Expression of Proteins Related to Proliferation, Migration and Differentiation. Int J Mol Sci 2018; 19:ijms19102846. [PMID: 30241282 PMCID: PMC6212992 DOI: 10.3390/ijms19102846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies showed that P1G10, a proteolytic fraction from Vasconcellea cundinamarcensis latex, reduced the tumor mass in animals bearing melanoma, increased in vitro DNA fragmentation and decreased cell adhesion. Here, we present some molecular and cellular events related to the antimetastatic effect induced by the CMS-2 fraction derived from P1G10 in metastatic melanoma B16-F10 and melanocyte Melan-a. Using difference gel electrophoresis and mass spectrometry, we identified four proteins overexpressed in tumor cells, all of them related to proliferation, survival, migration and cell invasion, that had their expression normalized upon treatment with CMS-2: nucleophosmin 1, heat shock protein 65, calcyclin binding protein and eukaryotic translation initiation factor 4H. In addition, some antioxidant and glycolytic enzymes show increased expression after exposure to CMS-2, along with an induction of melanogenesis (differentiation marker). The down regulation of cofilin 1, a protein involved in cell motility, may explain the inhibition of cell migration and dendritic-like outgrowth in B16-F10 and Melan-a, observed after CMS-2 treatment. Taken together, it is argued that CMS-2 modulates the expression of proteins related to metastatic development, driving the cell to a more differentiated-like state. These effects support the CMS-2 antimetastatic activity and place this fraction in the category of anticancer agent.
Collapse
|
5
|
Kądziołka B, Dębski KJ, Bieganowski P, Leśniak W, Filipek A. Transcriptional regulation of CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression pattern in colorectal cancer HCT116 cells. IUBMB Life 2017; 70:50-59. [PMID: 29197151 DOI: 10.1002/iub.1698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022]
Abstract
The CacyBP/SIP protein is expressed at a particularly high level in brain, spleen, and various tumors. In this work, we have studied transcriptional regulation of the CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression in colorectal cancer HCT116 cells. We have shown that E2F1, EGR1, and CREB transcription factors bind to the CacyBP/SIP gene promoter and stimulate transcription of CacyBP/SIP gene. The role of CREB was further confirmed by the observation that forskolin, a strong activator of CREB phosphorylation/activity, increased CacyBP/SIP gene promoter activity. Moreover, we have shown that CREB dominant negative mutants, CREB133 and KCREB, inhibits CacyBP/SIP promoter activity. To check the biological significance of increased CacyBP/SIP expression/level we have applied RNA microarray analysis and have found that upregulation of CacyBP/SIP entails changes in mRNA level of many genes involved, among others, in immune processes. © 2017 IUBMB Life, 70(1):50-59, 2018.
Collapse
Affiliation(s)
- Beata Kądziołka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J Dębski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Filipek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Topolska-Woś AM, Chazin WJ, Filipek A. CacyBP/SIP--Structure and variety of functions. Biochim Biophys Acta Gen Subj 2015; 1860:79-85. [PMID: 26493724 DOI: 10.1016/j.bbagen.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins. SCOPE OF REVIEW CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes. MAJOR CONCLUSIONS CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies. GENERAL SIGNIFICANCE The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, USA; Department of Chemistry, Vanderbilt University, Nashville, USA; Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|