1
|
Kim JH, Lee R, Hwang SH, Choi SH, Kim JH, Cho IH, Lee JI, Nah SY. Ginseng and ginseng byproducts for skincare and skin health. J Ginseng Res 2024; 48:525-534. [PMID: 39583168 PMCID: PMC11583465 DOI: 10.1016/j.jgr.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024] Open
Abstract
Ginseng is a traditional herbal medicine with a long history of use for the prevention and/or treatment of various diseases. Ginseng is used worldwide as a functional food to maintain human health. In addition, ginseng has been used as a raw ingredient in cosmetics with various applications, ranging from skin toning to anti-aging. Some cosmetic products contain ginseng extracts from Korea and other countries, as it is thought that ginseng can also exert beneficial effects on human skin. However, it remains unclear which ginseng component(s) could be the main active compound that directly contributes to skin health and/or prevents skin aging. It is also important to understand the mechanisms by which the ginseng component(s) exert their effects on the skin and skin health. This review describes recent in vitro and in vivo studies involving ginseng extracts, ginseng ingredients, and ginseng byproducts for skincare and skin health and discusses emerging evidence that ginsenosides, gintonin, and ginseng byproducts could be novel candidates for skincare and skin health applications ranging from anti-aging to the treatment of skin diseases such as atopic dermatitis and hypertrophic scars and keloids. The mechanisms underlying the beneficial effects of ginseng components and byproducts on skin health are discussed. In addition, this review shows how ginseng components, such as gintonin, a newly identified ginseng component, might contribute to skin health and skin disease when used as a supplementary ingredient in cosmetics and further proposes a novel combination in cosmetic products containing both ginsenosides and gintonin.
Collapse
Affiliation(s)
- Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan City, Jeollabuk-Do, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Protective Effect of Total Panax Notoginseng Saponins on Retinal Ganglion Cells of an Optic Nerve Crush Injury Rat Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4356949. [PMID: 34395614 PMCID: PMC8360732 DOI: 10.1155/2021/4356949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Irreversible loss of retinal ganglion cells (RGCs) is a common pathological feature of various optic nerve degenerative diseases such as glaucoma and ischemic optic neuropathy. Effective protection of RGCs is the key to successful treatment of these diseases. Total Panax notoginseng saponins (TPNS) are the main active component of Panax notoginseng, which has an inhibitory effect on the apoptosis pathway. This study is aimed at assessing the protective effect of TPNS on RGCs of the optic nerve crush (ONC) model of rats and exploring the underlying mechanisms. The intraperitoneal or intravitreal injection of TPNS was used based on the establishment of the rat ONC model. Fifteen days after the injury, the cell membrane fluorescent probe (Fluoro-Gold) was applied to retrograde RGCs through the superior colliculus and obtain the number of surviving RGCs. TUNEL assay was also used to detect the number and density of RGC apoptosis after the ONC model. The expression and distribution of Bcl-2/Bax, c-Jun/P-c-Jun, and P-JNK in the retina were demonstrated by Western blot analysis. After the intervention of TPNS, the rate of cell survival increased in different retinal regions (p < 0.05) and the number of apoptosis cells decreased. Regarding the expression of Bcl-2/Bax, c-Jun/P-c-Jun, and P-JNK-related apoptotic proteins, TPNS can reduce the level of apoptosis and play a role in protecting RGCs (p < 0.05). These findings indicate that topical administration of TPNS can inhibit cell apoptosis and promote RGC survival in the crushed optic nerve.
Collapse
|