1
|
Lee S, Jung DM, Kang BM, Yoo JG, Shin JM, Joo WJ, Lee JY, Kwon HJ, Kim CD, Kim KK, Choi CW. Expression of FABP4 in Human Sebaceous Glands and Its Role in Sebum Production: A New Regulator of Sebum Production. J Invest Dermatol 2024:S0022-202X(24)03050-1. [PMID: 39746574 DOI: 10.1016/j.jid.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Gwi Yoo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Woo-Jin Joo
- Departmentof Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, Korea
| | - Jin-Young Lee
- Departmentof Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, Korea
| | - Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
| | - Chong Won Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
2
|
Seiringer P, Hillig C, Schäbitz A, Jargosch M, Pilz AC, Eyerich S, Szegedi A, Sochorová M, Gruber F, Zouboulis CC, Biedermann T, Menden MP, Eyerich K, Törőcsik D. Spatial transcriptomics reveals altered lipid metabolism and inflammation-related gene expression of sebaceous glands in psoriasis and atopic dermatitis. Front Immunol 2024; 15:1334844. [PMID: 38433843 PMCID: PMC10904577 DOI: 10.3389/fimmu.2024.1334844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Sebaceous glands drive acne, however, their role in other inflammatory skin diseases remains unclear. To shed light on their potential contribution to disease development, we investigated the spatial transcriptome of sebaceous glands in psoriasis and atopic dermatitis patients across lesional and non-lesional human skin samples. Both atopic dermatitis and psoriasis sebaceous glands expressed genes encoding key proteins for lipid metabolism and transport such as ALOX15B, APOC1, FABP7, FADS1/2, FASN, PPARG, and RARRES1. Also, inflammation-related SAA1 was identified as a common spatially variable gene. In atopic dermatitis, genes mainly related to lipid metabolism (e.g. ACAD8, FADS6, or EBP) as well as disease-specific genes, i.e., Th2 inflammation-related lipid-regulating HSD3B1 were differentially expressed. On the contrary, in psoriasis, more inflammation-related spatially variable genes (e.g. SERPINF1, FKBP5, IFIT1/3, DDX58) were identified. Other psoriasis-specific enriched pathways included lipid metabolism (e.g. ACOT4, S1PR3), keratinization (e.g. LCE5A, KRT5/7/16), neutrophil degranulation, and antimicrobial peptides (e.g. LTF, DEFB4A, S100A7-9). In conclusion, our results show that sebaceous glands contribute to skin homeostasis with a cell type-specific lipid metabolism, which is influenced by the inflammatory microenvironment. These findings further support that sebaceous glands are not bystanders in inflammatory skin diseases, but can actively and differentially modulate inflammation in a disease-specific manner.
Collapse
Affiliation(s)
- Peter Seiringer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Hillig
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany
| | - Alexander Schäbitz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Zentrum für Allergie und Umwelt (ZAUM) - Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
| | - Anna Caroline Pilz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefanie Eyerich
- Zentrum für Allergie und Umwelt (ZAUM) - Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Hungarian Research Network (HUN-REN DE), Allergology Research Group, Debrecen, Hungary
| | - Michaela Sochorová
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Hungarian Research Network (HUN-REN DE), Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
3
|
Li X, Zeng X, Kim D, Jiang J, Wei F, Zhang J, Chai B, Fu L, Lee Y, Kim C, Chen H. Krüppel-like factor 4 (KLF4) facilitates lipid production in immortalized human sebocytes via regulating the expression of SREBP1. Biochem Biophys Res Commun 2023; 667:146-152. [PMID: 37229823 DOI: 10.1016/j.bbrc.2023.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Acne is associated with the excessive production of sebum, a complex mixture of lipids, in the sebaceous glands. The transcription factor Krüppel-like factor 4 (KLF4) plays an important role in skin morphogenesis, but its role in sebum production by sebocytes is not well known. PURPOSE In this study, we investigated the possible action mechanism of KLF4 during calcium-induced lipogenesis in immortalized human sebocytes. METHODS Sebocytes were treated with calcium, and lipid production was confirmed by thin-layer chromatography (TLC) and Oil Red O staining. To investigate the effect of KLF4, sebocytes were transduced with the KLF4-overexpressing adenovirus, and then lipid production was evaluated. RESULTS Calcium treatment resulted in increased sebum production in terms of squalene synthesis in sebocytes. In addition, calcium increased the expression of lipogenic regulators such as sterol-regulatory element binding protein 1 (SREBP1), sterol-regulatory element binding protein 2 (SREBP2), and stearoyl-CoA desaturase (SCD). Similarly, the expression of KLF4 was increased by calcium in sebocytes. To investigate the effect of KLF4, we overexpressed KLF4 in sebocytes using recombinant adenovirus. As a result, KLF4 overexpression increased the expression of SREBP1, SREBP2, and SCD. Parallel to this result, lipid production was also increased by KLF4 overexpression. Chromatin immunoprecipitation revealed the binding of KLF4 to the SREBP1 promoter, indicating that KLF4 may directly regulate the expression of lipogenic regulators. CONCLUSION These results suggest that KLF4 is a novel regulator of lipid production in sebocytes.
Collapse
Affiliation(s)
- XueMei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xin Zeng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - DoYeon Kim
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Wei
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - JingYu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Young Lee
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - ChangDeok Kim
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| | - HongXiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|