1
|
Tang Z, Jin L, Yang Y. The dual role of IL-17 in periodontitis regulating immunity and bone homeostasis. Front Immunol 2025; 16:1578635. [PMID: 40248692 PMCID: PMC12003107 DOI: 10.3389/fimmu.2025.1578635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Periodontitis is a common dysbiotic bacteria-induced inflammatory disease characterized by alveolar bone resorption, leading to tooth loss. Interleukin-17 (IL-17) is a critical cytokine with dual roles in periodontium, which exerts the function of host defense, including neutrophil recruitment, phagocytosis, and mucosal immunity. However, excessive expression of IL-17 causes persistent chronic inflammation, local tissue breakdown, and bone loss. This review highlights the protective and pathological functions of IL-17 on immunity and bone homeostasis in inflammatory bone-related diseases. We also provide the latest findings with IL-17 knockout mice in periodontitis and highlight complex immune responses under various experimental models. This may provide a critical perception of inflammatory bone-related disease management using an immune-modulating strategy.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Jie Y, Xia L, ZeHui P, YuanZhu L, Bin C, Yaohua L, Si G, GuoHui B, JianGuo L, Qin F. EGCG Regulates the Effect of HDAC6 on Oxidative Stress of Human Periodontal Ligament Fibroblasts Induced by Lipopolysaccharide. Immun Inflamm Dis 2025; 13:e70198. [PMID: 40289388 PMCID: PMC12034745 DOI: 10.1002/iid3.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) has anti-inflammatory and antioxidative stress effects in periodontitis. However, the specific mechanisms involved remain unclear. Our study explored whether the mechanism by which EGCG on alleviates inflammation and oxidative stress in human periodontal ligament fibroblasts (hPDLCs) involves HDAC6. METHODS We treated hPDLCs with lipopolysaccharide (LPS) and EGCG, and detected the resultant effects on cell proliferation by the CCK-8 method. Cells were divided into three groups: control, LPS, and EGCG + LPS. The expression of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) was detected by enzyme-linked immunosorbent assay (ELISA), and the expression of reactive oxygen species (ROS) was detected using 2',7'-dichlorofluorescein diacetate. The expression of histone deacetylase 6 (HDAC6), p62, heat shock protein 70 (Hsp70), Kelch-like ECH-associating protein (Keap1), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1(HO-1) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein expression of HDAC6, Nrf2, and nod-like receptor protein 3 (NLRP3) was detected by western blotting. RESULTS At concentrations of less than 100 μmol/L, EGCG can promote cell proliferation and significantly inhibit the levels of TNF-α and IL-1β. Moreover, EGCG can activate the Nrf2 pathway and inhibit ROS production. Furthermore, EGCG inhibited the expression of HDAC6 and promoted the expression of p62 and Hsp70, indicating that the anti-inflammatory and antioxidant effects of EGCG are closely related to HDAC6. CONCLUSIONS EGCG can regulate LPS-induced oxidative stress levels of hPDLCs through the Keap1/Nrf2/HO-1 pathway and reduce the expression of HDAC6-related factors. Therefore, HDAC6 may be a potential target for EGCG in the treatment of periodontal inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yang Jie
- Affiliated Stomatological HospitalZunyi Medical UniversityZunyiChina
- Kweichow Moutai HospitalZunyiChina
| | - Liu Xia
- Affiliated Stomatological HospitalZunyi Medical UniversityZunyiChina
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Peng ZeHui
- Affiliated Stomatological HospitalZunyi Medical UniversityZunyiChina
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Long YuanZhu
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Chen Bin
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Li Yaohua
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Gao Si
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Bai GuoHui
- Affiliated Stomatological HospitalZunyi Medical UniversityZunyiChina
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Liu JianGuo
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| | - Fan Qin
- Affiliated Stomatological HospitalZunyi Medical UniversityZunyiChina
- Key Laboratory of Oral Disease Research, School of StomatologyZunyi Medical UniversityZunyiChina
| |
Collapse
|
3
|
Ebersole JL, Novak MJ, Cappelli D, Dawson DR, Gonzalez OA. Use of Nonhuman Primates in Periodontal Disease Research: Contribution of the Caribbean Primate Research Center and Cayo Santiago Rhesus Colony. Am J Primatol 2025; 87:e23724. [PMID: 39902755 DOI: 10.1002/ajp.23724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
This review article provides a historical summary regarding the use, value, and validity of the nonhuman primate model of periodontal disease. The information provided cites results regarding the features of naturally occurring periodontitis in various nonhuman primate species, as well as the implementation of a model of experimental periodontitis. Clinical similarities to human disease are discussed, as well as the use of these models to document physiological and pathophysiological tissue changes in the periodontium related to the initiation and progression of the disease. Additionally, the use of these analytics in examination of the tissue characteristics of the disease, and the utility of nonhuman primates in testing and describing various therapeutic modalities are described. As periodontitis represents a disease of an oral microbiome dysbiosis, features of the altered microbiome in the disease in nonhuman primates are related to similar findings in the human condition. The review then provides a summary of the features of local and systemic host responses to a periodontal infection in an array of nonhuman primate species. This includes attributes of innate immunity, acute and chronic inflammation, and adaptive immune responses. Finally, extensive information is presented regarding the role of Macaca mulatta derived from the Cayo Santiago community in evaluating critical biologic details of disease initiation, progression, and resolution. This unique resource afforded the capacity to relate risk and expression of disease and traits of the responses to age, sex, and matriline derivation (e.g., heritability) of the animals. The Cayo Santiago colony continues to provide a critical preclinical model for assessment of molecular aspects of the disease process that can lead to both new targets for therapeutics and consideration of vaccine approaches to preventing and/or treating this global disease.
Collapse
Grants
- This study was supported by National Institute on Minority Health and Health Disparities (MD007600), National Institute of Dental and Craniofacial Research (DE05599, DE07267, DE07457), National Center for Research Resources (RR003051, RR020145, RR03640), National Institute of General Medical Sciences (GM103538), Office of Research Infrastructure Programs (OD012217, OD021458), and National Institute on Aging (AG021406).
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - D Cappelli
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - D R Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Wallin-Bengtsson V, Scherdin-Almhöjd U, Roos-Jansåker AM. Supra- and sub-gingival instrumentation of periodontitis with the adjunctive treatment of a chloramine - a one-year randomized clinical trial study. Acta Odontol Scand 2024; 83:1-6. [PMID: 37962876 PMCID: PMC11302644 DOI: 10.1080/00016357.2023.2281486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Periodontitis is a bacterial-induced disease and for this reason controlling the microbiota is a necessity. Therapy includes self-performed daily oral hygiene in combination with supra- and sub-gingival instrumentation. An adjunctive antimicrobial agent may improve the outcome. AIMS To assess whether a chloramine (Perisolv®) has an adjunctive effect to non-surgical periodontal therapy and whether non-surgical periodontal therapy affects quality of life. MATERIAL AND METHODS Thirty-eight patients were randomized to a test or a control group. Clinical indices were performed at baseline and at three and twelve months. In the test group, Perisolv® was applied initially and after the sub-gingival instrumentation in pathological pockets. Oral health-related quality of life was measured with the Oral Health Impact Profile (OHIP) instrument at baseline and twelve months. RESULTS In both groups, an initial probing pocket depth (PPD) of > 4 mm and bleeding on probing (BOP) were statistically reduced (p < 0.002 and p < 0.002 respectively) at twelve months and after adjustment for Bonferroni. There were no significant differences between the test and the control group in terms of the number of PPD, BOP or plaque index, or in the mean OHIP score. CONCLUSIONS Chloramine did not have an adjunctive effect, but the overall therapy was significantly efficacious both clinically and in terms of quality of life. TRIAL REGISTRATION Registered at www. CLINICALTRIALS gov:NCT05757921.
Collapse
Affiliation(s)
- Viveca Wallin-Bengtsson
- Department of Oral Health, Faculty of Oral Health Science, Kristianstad University, Kristianstad, Sweden.
| | | | - Ann-Marie Roos-Jansåker
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Periodontology, Blekinge Hospital, Karlskrona, Sweden
| |
Collapse
|
5
|
Gasparoni LM, Alves FA, Holzhausen M, Pannuti CM, Serpa MS. Periodontitis as a risk factor for head and neck cancer. Med Oral Patol Oral Cir Bucal 2021; 26:e430-e436. [PMID: 33340075 PMCID: PMC8254889 DOI: 10.4317/medoral.24270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/20/2023] Open
Abstract
Background Periodontitis may be associated with the development of head and neck cancer (HNC). A literature review was conducted to understand the possible association between them.
Material and Methods Articles published in the PubMed database from January 1999 and May 2020 were retrieved. Limitations of the studies and biological mechanisms were discussed.
Results A total of 4,232 articles were found. Of these, 13 were analyzed according to inclusion criteria. Most papers found some association between periodontitis and HNC, although differences in periodontal evaluation, sample size, study design and tumor sites were observed. Porphyromonas gingivalis appears to increase the chance of both diseases, and it may be one of their main potential risk factors. Genetic predisposition is increased by exposure to environmental factors which can directly induce epigenetic changes that contribute to these diseases.
Conclusions Understanding the mechanisms related to periodontitis and HNC has increased, however, well-designed clinical studies are needed for better conclusions. Furthermore, the advent of multiple "omic" technologies will help comprehend their possible association. Key words:Periodontitis, head and neck cancer, oral cancer, risk factors, biological factors.
Collapse
Affiliation(s)
- L-M Gasparoni
- Department of Stomatology A.C.Camargo Cancer Center São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Cho YD, Kim WJ, Ryoo HM, Kim HG, Kim KH, Ku Y, Seol YJ. Current advances of epigenetics in periodontology from ENCODE project: a review and future perspectives. Clin Epigenetics 2021; 13:92. [PMID: 33902683 PMCID: PMC8077755 DOI: 10.1186/s13148-021-01074-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. MAIN BODY Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. CONCLUSIONS In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Emfietzoglou R, Pachymanolis E, Piperi C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr Med Chem 2021; 28:1091-1103. [PMID: 31942842 DOI: 10.2174/0929867327666200114114802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible character may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets. METHODS We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overexpression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine production. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytokines, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations. CONCLUSION Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health.
Collapse
Affiliation(s)
- Rodopi Emfietzoglou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Evangelos Pachymanolis
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias street, 115 27 Athens, Greece
| |
Collapse
|
8
|
Decitabine Inhibits Bone Resorption in Periodontitis by Upregulating Anti-Inflammatory Cytokines and Suppressing Osteoclastogenesis. Biomedicines 2021; 9:biomedicines9020199. [PMID: 33671221 PMCID: PMC7922804 DOI: 10.3390/biomedicines9020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation controls several inflammatory genes affecting bone homeostasis. Hitherto, inhibition of DNA methylation in vivo in the context of periodontitis and osteoclastogenesis has not been attempted. Ligature-induced periodontitis in C57BL/6J mice was induced by placing ligature for five days with Decitabine (5-aza-2′-deoxycytidine) (1 mg/kg/day) or vehicle treatment. We evaluated bone resorption, osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) and mRNA expression of anti-inflammatory molecules using cluster differentiation 14 positive (CD14+) monocytes from human peripheral blood. Our data showed that decitabine inhibited bone loss and osteoclast differentiation experimental periodontitis, and suppressed osteoclast CD14+ human monocytes; and conversely, that it increased bone mineralization in osteoblastic cell line MC3T3-E1 in a concentration-dependent manner. In addition to increasing IL10 (interleukin-10), TGFB (transforming growth factor beta-1) in CD14+ monocytes, decitabine upregulated KLF2 (Krüppel-like factor-2) expression. Overexpression of KLF2 protein enhanced the transcription of IL10 and TGFB. On the contrary, site-directed mutagenesis of KLF2 binding site in IL10 and TFGB abrogated luciferase activity in HEK293T cells. Decitabine reduces bone loss in a mouse model of periodontitis by inhibiting osteoclastogenesis through the upregulation of anti-inflammatory cytokines via KLF2 dependent mechanisms. DNA methyltransferase inhibitors merit further investigation as a possible novel therapy for periodontitis.
Collapse
|
9
|
Francis M, Gopinathan G, Foyle D, Fallah P, Gonzalez M, Luan X, Diekwisch T. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis. J Dent Res 2020; 99:1332-1340. [PMID: 32762486 PMCID: PMC7580172 DOI: 10.1177/0022034520932491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The packaging of DNA around nucleosomes exerts dynamic control over eukaryotic gene expression either by granting access to the transcriptional machinery in an open chromatin state or by silencing transcription via chromatin compaction. Histone methylation modification affects chromatin through the addition of methyl groups to lysine or arginine residues of histones H3 and H4 by means of histone methyl transferases or histone demethylases. Changes in histone methylation state modulate periodontal gene expression and have profound effects on periodontal development, health, and therapy. At the onset of periodontal development, progenitor cell populations such as dental follicle cells are characterized by an open H3K4me3 chromatin mark on RUNX2, MSX2, and DLX5 gene promoters. During further development, periodontal progenitor differentiation undergoes a global switch from the H3K4me3 active methyl mark to the H3K27me3 repressive mark. When compared with dental pulp cells, periodontal neural crest lineage differentiation is characterized by repressive H3K9me3 and H3K27me3 marks on typical dentinogenesis-related genes. Inflammatory conditions as they occur during periodontal disease result in unique histone methylation signatures in affected cell populations, including repressive H3K9me3 and H3K27me3 histone marks on extracellular matrix gene promoters and active H3K4me3 marks on interleukin, defensin, and chemokine gene promoters, facilitating a rapid inflammatory response to microbial pathogens. The inflammation-induced repression of chromatin on extracellular matrix gene promoters presents a therapeutic opportunity for the application of histone methylation inhibitors capable of inhibiting suppressive trimethylation marks. Furthermore, inhibition of chromatin coregulators through interference with key inflammatory mediators such as NF-kB by means of methyltransferase inhibitors provides another avenue to halt the exacerbation of the inflammatory response in periodontal tissues. In conclusion, histone methylation dynamics play an intricate role in the fine-tuning of chromatin states during periodontal development and harbor yet-to-be-realized potential for the treatment of periodontal disease.
Collapse
Affiliation(s)
- M. Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G. Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - D. Foyle
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - P. Fallah
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - M. Gonzalez
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - X. Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - T.G.H. Diekwisch
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
10
|
Jiang Y, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis 2020; 28:249-263. [PMID: 32989880 DOI: 10.1111/odi.13654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore how various methylation mechanisms function and affect macrophages in periodontitis, with an aim of getting a comprehensive understanding of pathogenesis of the disease. SUBJECT Alterations in DNA methylation are associated with different periodontitis susceptible factors and disrupt immunity homeostasis. The host's immune response to stimulus plays a vital role in the progression of periodontitis. Macrophages are key immune cells of immune system. They act as critical regulators in maintaining issue homeostasis with their nature of high plasticity. The altered methylation status of genes may cause abnormal expression of proteins in the progress of periodontitis, thus, exert potential influence on macrophages. RESULTS Certain genes are selectively activated or silenced due to the changes in the methylation status, which causes the alteration of the expression level of cytokines/chemokines, signal molecules, extracellular matrix molecules, leads to the change in local microenvironment, affects activation states of immune cells including macrophages, thus influences the host immune response during periodontitis.. This results in differential susceptibility and therapeutic outcome. CONCLUSION DNA methylation alteration may cause aberrant expression level of genes associated with periodontal diseases, thus results in deregulation of macrophages, which supports the prospect of using DNA methylation-related parameter as a new biomarker for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| |
Collapse
|
11
|
Abstract
Periodontitis is a complex disease: (a) various causative factors play a role simultaneously and interact with each other; and (b) the disease is episodic in nature, and bursts of disease activity can be recognized, ie, the disease develops and cycles in a nonlinear fashion. We recognize that various causative factors determine the immune blueprint and, consequently, the immune fitness of a subject. Normally, the host lives in a state of homeostasis or symbiosis with the oral microbiome; however, disturbances in homeostatic balance can occur, because of an aberrant host response (inherited and/or acquired during life). This imbalance results from hyper- or hyporesponsiveness and/or lack of sufficient resolution of inflammation, which in turn is responsible for much of the disease destruction seen in periodontitis. The control of this destruction by anti-inflammatory processes and proresolution processes limits the destruction to the tissues surrounding the teeth. The local inflammatory processes can also become systemic, which in turn affect organs such as the heart. Gingival inflammation also elicits changes in the ecology of the subgingival environment providing optimal conditions for the outgrowth of gram-negative, anaerobic species, which become pathobionts and can propagate periodontal inflammation and can further negatively impact immune fitness. The factors that determine immune fitness are often the same factors that determine the response to the resident biofilm, and are clustered as follows: (a) genetic and epigenetic factors; (b) lifestyle factors, such as smoking, diet, and psychosocial conditions; (c) comorbidities, such as diabetes; and (d) local and dental factors, as well as randomly determined factors (stochasticity). Of critical importance are the pathobionts in a dysbiotic biofilm that drive the viscious cycle. Focusing on genetic factors, currently variants in at least 65 genes have been suggested as being associated with periodontitis based on genome-wide association studies and candidate gene case control studies. These studies have found pleiotropy between periodontitis and cardiovascular diseases. Most of these studies point to potential pathways in the pathogenesis of periodontal disease. Also, most contribute to a small portion of the total risk profile of periodontitis, often limited to specific racial and ethnic groups. To date, 4 genetic loci are shared between atherosclerotic cardiovascular diseases and periodontitis, ie, CDKN2B-AS1(ANRIL), a conserved noncoding element within CAMTA1 upstream of VAMP3, PLG, and a haplotype block at the VAMP8 locus. The shared genes suggest that periodontitis is not causally related to atherosclerotic diseases, but rather both conditions are sequelae of similar (the same?) aberrant inflammatory pathways. In addition to variations in genomic sequences, epigenetic modifications of DNA can affect the genetic blueprint of the host responses. This emerging field will yield new valuable information about susceptibility to periodontitis and subsequent persisting inflammatory reactions in periodontitis. Further studies are required to verify and expand our knowledge base before final cause and effect conclusions about the role of inflammation and genetic factors in periodontitis can be made.
Collapse
Affiliation(s)
- Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Cho YD, Kim BS, Kim WJ, Kim HJ, Baek JH, Woo KM, Seol YJ, Ku Y, Ryoo HM. Histone acetylation together with DNA demethylation empowers higher plasticity in adipocytes to differentiate into osteoblasts. Gene 2020; 733:144274. [DOI: 10.1016/j.gene.2019.144274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
13
|
Transcriptome and methylome analysis of periodontitis and peri-implantitis with tobacco use. Gene 2019; 727:144258. [PMID: 31759984 DOI: 10.1016/j.gene.2019.144258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Peri-implantitis is similar to periodontitis in both symptoms and treatment; however, their level of similarity remains controversial. Here, we compared multiple cases of periodontitis and peri-implantitis through transcriptome and methylome profiling, and analyzed the effects of smoking as a typical risk factor. Human gingival tissues were obtained from 20 patients with periodontitis or peri-implantitis via periodontal surgical procedures. Total RNA and genomic DNA were isolated, and transcriptome and methylome datasets were generated. Comprehensive analysis of differential gene expression, DNA methylation, and protein-protein interactions indicated that periodontitis and peri-implantitis share biological similarities; however, hierarchical clustering between the two disease groups revealed distinct molecular characteristics. These differences might be related to structural differences in natural tooth-bone and implant-bone. Additionally, smoking differentially affected periodontitis and peri-implantitis in terms of host-defense mechanism impairment. Within the limitations of this study, the results provide evidence that peri-implantitis is distinct from periodontitis and that smoking potentially affects disease progression. Our study provides a foundation for the rational design of a large-scale study in the future for a more comprehensive analysis that includes microbiome and clinical data.
Collapse
|
14
|
Rajan S, Ljunggren A, Manton DJ, Björkner AE, McCullough M. Post-mitotic odontoblasts in health, disease, and regeneration. Arch Oral Biol 2019; 109:104591. [PMID: 31710968 DOI: 10.1016/j.archoralbio.2019.104591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Description of the odontoblast lifecycle, an overview of the known complex molecular interactions that occur when the health of the dental pulp is challenged and the current and future management strategies on vital and non-vital teeth. METHODS A literature search of the electronic databases included MEDLINE (1966-April 2019), CINAHL (1982-April 2019), EMBASE and EMBASE Classic (1947-April 2019), and hand searches of references retrieved were undertaken using the following MESH terms 'odontoblast*', 'inflammation', 'dental pulp*', 'wound healing' and 'regenerative medicine'. RESULTS Odontoblasts have a sensory and mechano-transduction role so as to detect external stimuli that challenge the dental pulp. On detection, odontoblasts stimulate the innate immunity by activating defence mechanisms key in the healing and repair mechanisms of the tooth. A better understanding of the role of odontoblasts within the dental pulp complex will allow an opportunity for biological management to remove the cause of the insult to the dental pulp, modulate the inflammatory process, and promote the healing and repair capabilities of the tooth. Current strategies include use of conventional dental pulp medicaments while newer methods include bioactive molecules, epigenetic modifications and tissue engineering. CONCLUSION Regenerative medicine methods are in their infancy and experimental stages at best. This review highlights the future direction of dental caries management and consequently research.
Collapse
Affiliation(s)
- S Rajan
- The University of Melbourne, Australia.
| | | | - D J Manton
- The University of Melbourne, Australia; Centrum voor Tandheelkunde en Mondzorgkunde, UMCG, University of Groningen, the Netherlands
| | | | | |
Collapse
|
15
|
Sun J, Liu Y, Qu Q, Qu J, Luo W, Zhang F, Wu M. [Effect of histone acetylation on osteogenic differentiation of periodontal ligament stem cells derived from periodontitis tissue]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:102-105. [PMID: 30854829 DOI: 10.7518/hxkq.2019.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epigenetics is defined as a change in gene expression without the alteration of the genetic sequence. Such a change would be inherited by offspring. Histone acetylation is a type of epigenetics. Existing studies proposed that chronic periodontitis is related to epigenetic modification. In this review, we summarised the influence of chronic periodontitis on periodontal ligament stem cells by histone acetylation.
Collapse
Affiliation(s)
- Jin Sun
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Yun Liu
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Qian Qu
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Juan Qu
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Wei Luo
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Feng Zhang
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| | - Min Wu
- Stomatology Health Care Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518048, China
| |
Collapse
|
16
|
Daubert D, Pozhitkov A, Safioti L, Kotsakis G. Association of Global DNA Methylation to Titanium and Peri-Implantitis: A Case-Control Study. JDR Clin Trans Res 2019; 4:284-291. [DOI: 10.1177/2380084418822831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- D.M. Daubert
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - A.E. Pozhitkov
- Department of Restorative Dentistry, University of Washington, Seattle, WA, USA
| | - L.M. Safioti
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - G.A. Kotsakis
- Department of Periodontics, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol 2018; 44 Suppl 18:S52-S78. [PMID: 27754553 DOI: 10.1111/jcpe.12639] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aimed to produce the latest summary of the evidence for association of host genetic variants contributing to both periodontal diseases and caries. MATERIALS AND METHODS Two systematic searches of the literature were conducted in Ovid Medline, Embase, LILACS and Cochrane Library for large candidate gene studies (CGS), systematic reviews and genome-wide association studies reporting data on host genetic variants and presence of periodontal disease and caries. RESULTS A total of 124 studies were included in the review (59 for the periodontitis outcome and 65 for the caries outcome), from an initial search of 15,487 titles. Gene variants associated with periodontitis were categorized based on strength of evidence and then compared with gene variants associated with caries. Several gene variants showed moderate to strong evidence of association with periodontitis, although none of them had also been associated with the caries trait. CONCLUSIONS Despite some potential aetiopathogenic similarities between periodontitis and caries, no genetic variants to date have clearly been associated with both diseases. Further studies or comparisons across studies with large sample size and clear phenotype definition could shed light into possible shared genetic risk factors for caries and periodontitis.
Collapse
Affiliation(s)
- Luigi Nibali
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London (QMUL), London, UK
| | - Anna Di Iorio
- Library Services, UCL Eastman Dental Institute, London, UK
| | - Yu-Kang Tu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Alexandre R Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
An JY, Darveau R, Kaeberlein M. Oral health in geroscience: animal models and the aging oral cavity. GeroScience 2018; 40:1-10. [PMID: 29282653 PMCID: PMC5832657 DOI: 10.1007/s11357-017-0004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Age is the single greatest risk factor for many diseases, including oral diseases. Despite this, a majority of preclinical oral health research has not adequately considered the importance of aging in research aimed at the mechanistic understanding of oral disease. Here, we have attempted to provide insights from animal studies in the geroscience field and apply them in the context of oral health research. In particular, we discuss the relationship between the biology of aging and mechanisms of oral disease. We also present a framework for defining and utilizing age-appropriate rodents and present experimental design considerations, such as the number of age-points used and the importance of genetic background. While focused primarily on rodent models, alternative animal models that may be particularly useful for studies of oral health during aging, such as companion dogs and marmoset monkeys, are also discussed. We hope that such information will aid in the design of future preclinical studies of geriatric dental health, thus allowing more reliability for translation of such studies to age-associated oral disease in people.
Collapse
Affiliation(s)
- Jonathan Y An
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Richard Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA.
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Abstract
Odontogenic infections represent a common clinical problem in patients of all ages. The presence of teeth enables the direct spread of inflammatory products from dental caries, trauma, and/or periodontal disease into the maxilla and mandible. The radiographic changes seen depend on the type and duration of the inflammatory process and host body response. Imaging plays a central role in identifying the source of infection and the extent of the disease spread and in detecting any complications. Many different imaging modalities can be used. The radiographic features associated with acute and chronic inflammatory processes are discussed.
Collapse
Affiliation(s)
- Shaza Mardini
- BeamReaders, Inc, 7117 West Hood Place, Suite 110, Kennewick, WA 99336, USA.
| | - Anita Gohel
- Oral and Maxillofacial Radiology, Division of Oral and Maxillofacial Pathology and Radiology, The Ohio State University College of Dentistry, 3165 Postle Hall, 305 West 12th Avenue, Columbus, OH 43210-1267, USA
| |
Collapse
|
20
|
Shaddox LM, Mullersman AF, Huang H, Wallet SM, Langaee T, Aukhil I. Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics 2017; 9:94. [PMID: 28883894 PMCID: PMC5581417 DOI: 10.1186/s13148-017-0385-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/07/2017] [Indexed: 01/10/2023] Open
Abstract
Background We have previously demonstrated a Toll-like receptor (TLR)-mediated hyper-responsive phenotype in our cohort of localized aggressive periodontitis (LAP) individuals. However, mechanisms related to this phenotype are still not clear in the literature. The objective of this cross-sectional study is to examine the role of epigenetic regulation, specifically DNA methylation status of genes in the TLR pathway in this cohort. Peripheral blood was collected from 20 LAP patients and 20 healthy unrelated controls. Whole blood was stimulated with 1 μl (100 ng/μl) of purified Escherichia coli lipopolysaccharide (LPS) for 24 h and cyto/chemokines in the supernatants analyzed by Luminex multiplex assays. Genomic DNA extracted from buffy coats prepared from a second tube of whole blood was used for DNA methylation analysis by pyrosequencing of seven TLR signaling genes (FADD, MAP3K7, MYD88, IL6R, PPARA, IRAK1BP1, RIPK2). Results Significant differences in the methylation status were observed at specific CpG positions in LAP patients compared to healthy controls and interestingly also between severe and moderate LAP. Specifically, subjects with moderate LAP presented hypermethylation of both the upregulating (MAP3K7, MYD88, IL6R, and RIPK2) and downregulating (FADD, IRAK, and PPARA) genes, while severe LAP presented hypomethylation of these genes. Further analysis on CpG sites with significant differences in methylation status correlates with an increased pro-inflammatory cytokine profile for LAP patients. Conclusions Our findings suggest that epigenetic modifications of genes in the TLR pathway may orchestrate the thresholds for balancing induction and prevention of tissue destruction during the course of disease, and thus differ significantly at different stages of the disease, where moderate LAP shows hypermethylation and severe LAP shows hypomethylation of several genes. Trial registration https://clinicaltrials.gov, NCT01330719
Collapse
Affiliation(s)
- L M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, P.O. Box 100434, Gainesville, FL 32610-0434 USA.,Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL USA
| | - A F Mullersman
- Department of Periodontology, University of Florida College of Dentistry, P.O. Box 100434, Gainesville, FL 32610-0434 USA
| | - H Huang
- Department of Periodontology, University of Florida College of Dentistry, P.O. Box 100434, Gainesville, FL 32610-0434 USA
| | - S M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL USA
| | - T Langaee
- Center for Pharmacogenomics, University of Florida, Gainesville, FL USA
| | - I Aukhil
- Department of Periodontology, University of Florida College of Dentistry, P.O. Box 100434, Gainesville, FL 32610-0434 USA
| |
Collapse
|
21
|
Zhongchao W, Liyuan F, Dan T, Cong Z, Shijun L. [Therapeutic effect of enhancer of Zeste homolog 2 inhibitor GSK343 on periodontitis by regulating macrophage differentiation]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:264-268. [PMID: 28675010 DOI: 10.7518/hxkq.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To explore the therapeutic effect of enhancer of Zeste homolog 2 (EZH2) inhibitor GSK343 on periodontitis by regulating microphage differentiation. METHODS Macrophage RAW264.7 cells were divided into the blank (A group), control (B group), lipopolysaccharide (LPS) stimulation (C group), and LPS+GSK343 (D group) groups. Phenotype transformations was determined through Western blot analysis and enzyme-linked immunosorbent assay by detecting the differentiation of phenotypic biological markers, including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and Arginase-1 (Arg-1). Metergasis was identified by performing a phagocytosis test on Escherichia coli (E. coli). RESULTS Macrophage RAW264.7 cells produced classical phenotypic biomarkers (M1) TNF-α and iNOS under LPS stimulation. The expression levels of IL-10 and Arg-1 increased after adding GSK343 into the culture medium. GSK343 also induced the conversion of M1 macrophages into M2 macrophages. Macrophage RAW264.7 cells exerted a phagocytic effect on E. coli, and this effect was enhanced after adding LPS into the culture medium. GSK343 regulated the macrophage RAW264.7 phagocytosis of E. coli. CONCLUSIONS GSK343 possibly participates in the regulation of macrophage differentiation and, consequently, in the latent treatment of periodontitis.
Collapse
Affiliation(s)
- Wang Zhongchao
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fan Liyuan
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tan Dan
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhou Cong
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Oral Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luo Shijun
- Orofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China;Dept. of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Ari G, Cherukuri S, Namasivayam A. Epigenetics and Periodontitis: A Contemporary Review. J Clin Diagn Res 2016; 10:ZE07-ZE09. [PMID: 28050521 DOI: 10.7860/jcdr/2016/21025.8864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022]
Abstract
Periodontitis is characterized by infection and inflammation of the tooth supporting structures. Few signs of susceptibility and recurrence after treatment are seen due to the outgrowth of various pathogenic microorganisms. Many studies have been done to understand the genetic basis of periodontal disease. An increased risk for periodontitis has been shown with the variations in genes related to the inflammatory response. Interestingly, some of the genes regulated by epigenetic modifications are modified in response to environmental stimuli. Conditions such as cancer, autoimmune or inflammatory diseases have been dispensed by epigenetic mechanisms. The understanding of these molecular mechanisms and the early detection of susceptibility may guide in future periodontal disease treatment and prevention.
Collapse
Affiliation(s)
- Geetha Ari
- Reader, Department of Periodontology, Meenakshi Ammal Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Sandhya Cherukuri
- Postgraduate Student, Meenakshi Ammal Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Ambalavanan Namasivayam
- Professor and Head, Department of Periodontology, Meenakshi Ammal Dental College and Hospital , Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis 2016; 74:ftw082. [PMID: 27542389 DOI: 10.1093/femspd/ftw082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms have rapidly and controversially emerged as silent modulators of host defenses that can lead to a more prominent immune response and shape the course of inflammation in the host. Thus, the epigenetics can both drive the production of specific inflammatory mediators and control the magnitude of the host response. The epigenetic actions that are predominantly shown to modulate the host defense against microbial pathogens are DNA methylation, histone modification and the activity of non-coding RNAs. There is also growing evidence that opportunistic chronic pathogens, such as Porphyromonas gingivalis, as a microbial host subversion strategy, can epigenetically interfere with the host DNA machinery for successful colonization. Similarly, the novel involvement of small molecule 'danger signals', which are released by stressed or infected cells, at the center of host-pathogen interplay and epigenetics is developing. In this review, we systematically examine the latest knowledge within the field of epigenetics in the context of host-derived danger molecule and purinergic signaling, with a particular focus on host microbial defenses and infection-driven chronic inflammation.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
24
|
Hui T, Wang C, Chen D, Zheng L, Huang D, Ye L. Epigenetic regulation in dental pulp inflammation. Oral Dis 2016; 23:22-28. [PMID: 26901577 DOI: 10.1111/odi.12464] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/26/2016] [Accepted: 02/13/2016] [Indexed: 02/05/2023]
Abstract
Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis.
Collapse
Affiliation(s)
- T Hui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - C Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - L Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Schulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol 2016; 77:71-75. [DOI: 10.1016/j.humimm.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/25/2022]
|
26
|
Kojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, Yoshie H. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res 2015; 51:350-8. [PMID: 26247485 DOI: 10.1111/jre.12314] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Over-expression of tumor necrosis factor-alpha (TNF-α) plays a pathological role in chronic periodontitis (CP) and rheumatoid arthritis (RA), which might be regulated by the epigenetic mechanism. The aim of the present study was to evaluate whether there is a unique methylation profile of the TNF-α gene promoter in blood cells of individuals with CP and RA. MATERIAL AND METHODS The study participants consisted of 30 Japanese adults with RA (RA group), 30 race-matched adults with CP only (CP group) and 30 race-matched healthy controls (H group). Genomic DNA isolated from peripheral blood was modified by sodium bisulfite and analyzed, by direct sequencing, to investigate DNA methylation of the TNF-α gene promoter region. The level of TNF-α produced in mononuclear cells stimulated with Porphyromonas gingivalis lipopolysaccharide was determined using ELISA. RESULTS Twelve cytosine-guanine dinucleotide (CpG) motifs were identified in the TNF-α promoter fragment from -343 to +57 bp. The CP group showed a significantly higher methylation rate and frequency at -72 bp than the H group (p < 0.01). The RA group exhibited significantly higher methylation rates at seven CpG motifs (-302, -163, -119, -72, -49, -38 and +10 bp), and significantly higher methylation frequencies at six CpG motifs (-163, -119, -72, -49, -38 and +10 bp), than the H group (p < 0.01 for all comparisons). The levels of TNF-α produced were significantly different between individuals with and without methylation at -163 bp (p = 0.03). CONCLUSION These results suggest that the hypermethylated status of CpG motifs in the TNF-α gene promoter in blood cells may be unique to Japanese adults with CP and RA.
Collapse
Affiliation(s)
- A Kojima
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Kobayashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - S Ito
- Niigata Rheumatic Center, Shibata, Japan
| | - A Murasawa
- Niigata Rheumatic Center, Shibata, Japan
| | - K Nakazono
- Niigata Rheumatic Center, Shibata, Japan
| | - H Yoshie
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
27
|
Abstract
This review addresses the multicausal etiology of periodontitis, in which genetic factors play a role. The various proposed causes for periodontitis always work simultaneously, but the relative contribution of each of these varies from case to case. We are still at an early stage to identify the genes involved, in comparison with other chronic diseases. To date, the genetic variations firmly and repeatedly associated with periodontitis in some populations are found within the following genes: ANRIL, COX2, IL1, IL10, DEFB1, whereas many other proposed periodontitis candidate genes have not been firmly proven or replicated.
Collapse
|
28
|
Ohshima H. Oral Biosciences: The annual review 2014. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Seo JY, Park YJ, Yi YA, Hwang JY, Lee IB, Cho BH, Son HH, Seo DG. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod 2014; 40:14-22. [PMID: 25671208 PMCID: PMC4320272 DOI: 10.5395/rde.2015.40.1.14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.
Collapse
Affiliation(s)
- Ji-Yun Seo
- Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea
| | - Yoon-Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Young-Ah Yi
- Department of Dentistry, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Ji-Yun Hwang
- Nutrition Education Major, Graduate School of Education, Sangmyung University, Seoul, Korea
| | - In-Bog Lee
- Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea
| | - Byeong-Hoon Cho
- Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea
| | - Ho-Hyun Son
- Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea
| | - Deog-Gyu Seo
- Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea
| |
Collapse
|
30
|
Abiko Y, Uehara O, Fukumoto S, Ohta T. Epigenetics of oral infection and inflammatory diseases—DNA methylation changes in infections and inflammation diseases. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29:248-57. [PMID: 24976068 DOI: 10.1111/omi.12065] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 01/05/2023]
Abstract
In periodontitis, dysbiotic microbial communities exhibit synergistic interactions for enhanced protection from host defenses, nutrient acquisition, and persistence in an inflammatory environment. This review discusses evidence that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it. In this regard, inflammation can drive the selection and enrichment of these pathogenic communities by providing a source of nutrients in the form of tissue breakdown products (e.g. degraded collagen peptides and heme-containing compounds). In contrast, those species that cannot benefit from the altered ecological conditions of the inflammatory environment, or for which host inflammation is detrimental, are likely to be outcompeted. Consistent with the concept that inflammation fosters the growth of dysbiotic microbial communities, the bacterial biomass of human periodontitis-associated biofilms was shown to increase with increasing periodontal inflammation. Conversely, anti-inflammatory treatments in animal models of periodontitis were shown to diminish the periodontal bacterial load, in addition to protecting from bone loss. The selective flourishing of inflammophilic bacteria can perpetuate inflammatory tissue destruction by setting off a 'vicious cycle' for disease progression, in which dysbiosis and inflammation reinforce each other. Therefore, the control of inflammation appears to be central to the treatment of periodontitis, as it is likely to control both dysbiosis and disease progression.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
32
|
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 2013; 35:3-11. [PMID: 24269668 DOI: 10.1016/j.it.2013.09.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
Recent studies have uncovered novel mechanisms underlying the breakdown of periodontal host-microbe homeostasis, which can precipitate dysbiosis and periodontitis in susceptible hosts. Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications. Here, I discuss new paradigms in our understanding of periodontitis, which may shed light into other polymicrobial inflammatory disorders. In addition, I highlight gaps in knowledge required for an integrated picture of the interplay between microbes and innate and adaptive immune elements that initiate and propagate chronic periodontal inflammation.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|