1
|
O'Grady G, Gharibans AA, Du P, Huizinga JD. The gastric conduction system in health and disease: a translational review. Am J Physiol Gastrointest Liver Physiol 2021; 321:G527-G542. [PMID: 34549598 DOI: 10.1152/ajpgi.00065.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric peristalsis is critically dependent on an underlying electrical conduction system. Recent years have witnessed substantial progress in clarifying the operations of this system, including its pacemaking units, its cellular architecture, and slow-wave propagation patterns. Advanced techniques have been developed for assessing its functions at high spatiotemporal resolutions. This review synthesizes and evaluates this progress, with a focus on human and translational physiology. A current conception of the initiation and conduction of slow-wave activity in the human stomach is provided first, followed by a detailed discussion of its organization at the cellular and tissue level. Particular emphasis is then given to how gastric electrical disorders may contribute to disease states. Gastric dysfunction continues to grow in their prevalence and impact, and while gastric dysrhythmia is established as a clear and pervasive feature in several major gastric disorders, its role in explaining pathophysiology and informing therapy is still emerging. New insights from high-resolution gastric mapping are evaluated, together with historical data from electrogastrography, and the physiological relevance of emerging biomarkers from body surface mapping such as retrograde propagating slow waves. Knowledge gaps requiring further physiological research are highlighted.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Sarica AS, Bor S, Orman MN, Barajas-Martinez H, Juang JMJ, Antzelevitch C, Hasdemir C. Frequency of Irritable Bowel Syndrome in Patients with Brugada Syndrome and Drug-Induced Type 1 Brugada Pattern. Am J Cardiol 2021; 151:51-56. [PMID: 34034907 DOI: 10.1016/j.amjcard.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Irritable bowel syndrome (IBS) is one of the most widely recognized functional bowel disorders (FBDs) with a genetic component. SCN5A gene and SCN1B loci have been identified in population-based IBS cohorts and proposed to have a mechanistic role in the pathophysiology of IBS. These same genes have been associated with Brugada syndrome (BrS). The present study examines the hypothesis that these two inherited syndromes are linked. Prevalence of FBDs over a 12 months period were compared between probands with BrS/drug-induced type 1 Brugada pattern (DI-Type 1 BrP) (n = 148) and a control group (n = 124) matched for age, female sex, presence of arrhythmia and co-morbid conditions. SCN5A/SCN1B genes were screened in 88 patients. Prevalence of IBS was 25% in patients with BrS/DI-Type 1 BrP and 8.1% in the control group (p = 2.34 × 10-4). On stepwise logistic regression analysis, presence of current and/or history of migraine (OR of 2.75; 95% CI: 1.08 to 6.98; p = 0.033) was a predictor of underlying BrS/DI-Type 1 BrP among patients with FBDs. We identified 8 putative SCN5A/SCN1B variants in 7 (12.3%) patients with BrS/DI-Type 1 BrP and 1 (3.2%) patient in control group. Five out of 8 (62.5%) patients with SCN5A/SCN1B variants had FBDs. In conclusion, IBS is a common co-morbidity in patients with BrS/DI-Type 1 BrP. Presence of current and/or history of migraine are a predictor of underlying BrS/DI-Type 1 BrP among patients with FBDs. Frequent co-existence of IBS and BrS/DI-Type 1 BrP necessitates cautious use of certain drugs among the therapeutic options for IBS that are known to exacerbate the Brugada phenotype.
Collapse
|
3
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
4
|
Roston TM, Cunningham T, Lehman A, Laksman ZW, Krahn AD, Sanatani S. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698134. [PMID: 28469493 PMCID: PMC5392026 DOI: 10.1177/1179546817698134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.
Collapse
Affiliation(s)
- Thomas M Roston
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Taylor Cunningham
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Zachary W Laksman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Andrew D Krahn
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada.,Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
5
|
Beyder A, Farrugia G. Ion channelopathies in functional GI disorders. Am J Physiol Gastrointest Liver Physiol 2016; 311:G581-G586. [PMID: 27514480 PMCID: PMC5142191 DOI: 10.1152/ajpgi.00237.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 01/31/2023]
Abstract
In the gastrointestinal (GI) tract, abnormalities in secretion, absorption, motility, and sensation have been implicated in functional gastrointestinal disorders (FGIDs). Ion channels play important roles in all these GI functions. Disruptions of ion channels' ability to conduct ions can lead to diseases called ion channelopathies. Channelopathies can result from changes in ion channel biophysical function or expression due to mutations, posttranslational modification, and accessory protein malfunction. Channelopathies are strongly established in the fields of cardiology and neurology, but ion channelopathies are only beginning to be recognized in gastroenterology. In this review, we describe the state of the emerging field of GI ion channelopathies. Several recent discoveries show that channelopathies result in alterations in GI motility, secretion, and sensation. In the epithelium, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) or CFTR-associating proteins result in channelopathies with constipation or diarrhea as phenotypes. In the muscle, mutations in the SCN5A-encoded voltage-gated sodium channel NaV1.5 are associated with irritable bowel syndrome. In the sensory nerves, channelopathies of voltage-gated sodium channels NaV1.7 and NaV1.9 (encoded by SCN9A, SCN11A, respectively) manifest by either GI hyper- or hyposensation. Recent advances in structural biology and ion channel biophysics, coupled with personalized medicine, have fueled rapid discoveries of novel channelopathies and direct drug targeting of specific channelopathies. In summary, the emerging field of GI ion channelopathies has significant implications for functional GI disease stratification, diagnosis, and treatment.
Collapse
Affiliation(s)
- Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
6
|
Tse G, Lai ETH, Lee APW, Yan BP, Wong SH. Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart. Front Physiol 2016; 7:230. [PMID: 27378939 PMCID: PMC4906021 DOI: 10.3389/fphys.2016.00230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/30/2016] [Indexed: 01/09/2023] Open
Abstract
Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Eric T. H. Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
| | - Alex P. W. Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Sunny H. Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
7
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
8
|
Radulovic M, Anand P, Korsten MA, Gong B. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury. J Neurogastroenterol Motil 2015; 21:494-502. [PMID: 26424038 PMCID: PMC4622131 DOI: 10.5056/jnm15061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI.
Collapse
Affiliation(s)
- Miroslav Radulovic
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Preeti Anand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A Korsten
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Bing Gong
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Verstraelen TE, Ter Bekke RMA, Volders PGA, Masclee AAM, Kruimel JW. The role of the SCN5A-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders. Neurogastroenterol Motil 2015; 27:906-13. [PMID: 25898860 DOI: 10.1111/nmo.12569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gastrointestinal functional and motility disorders, like irritable bowel syndrome (IBS), have a high prevalence in the Western population and cause significant morbidity and loss of quality of life leading to considerable costs for health care. A decade ago, it has been demonstrated that interstitial cells of Cajal and intestinal smooth muscle cells, cells important for gastrointestinal motility, express the sodium channel alpha subunit Nav 1.5. In the heart, aberrant variants in this sodium channel, encoded by SCN5A, are linked to inherited arrhythmia syndromes, like the long-QT syndrome type 3 and Brugada syndrome. Mounting data show a possible contribution of SCN5A mutants to gastrointestinal functional and motility disorders. Two percent of IBS patients harbor SCN5A mutations with electrophysiological evidence of loss- and gain-of-function. In addition, gastrointestinal symptoms are more prevalent in cardiac SCN5A-mutation positive patients. PURPOSE This review firstly describes the Nav 1.5 channel and its physiological role in ventricular cardiomyocytes and gastrointestinal cells, then we focus on the involvement of mutant Nav 1.5 in gastrointestinal functional and motility disorders. Future research might uncover novel mutation-specific treatment strategies for SCN5A-encoded gastrointestinal channelopathies.
Collapse
Affiliation(s)
- T E Verstraelen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - R M A Ter Bekke
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P G A Volders
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
10
|
O'Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2015; 41:854-62. [PMID: 25115692 DOI: 10.1111/1440-1681.12288] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Gastric arrhythmia continues to be of uncertain diagnostic and therapeutic significance. However, recent progress has been substantial, with technical advances, theoretical insights and experimental discoveries offering new translational opportunities. The discoveries that interstitial cells of Cajal (ICC) generate slow waves and that ICC defects are associated with dysmotility have reinvigorated gastric arrhythmia research. Increasing evidence now suggests that ICC depletion and damage, network disruption and channelopathies may lead to aberrant slow wave initiation and conduction. Histological and high-resolution (HR) electrical mapping studies have now redefined the human 'gastric conduction system', providing an improved baseline for arrhythmia research. The application of HR mapping to arrhythmia has also generated important new insights into the spatiotemporal dynamics of arrhythmia onset and maintenance, resulting in the emergence of new provisional classification schemes. Meanwhile, the strong associations between gastric functional disorders and electrogastrography (EGG) abnormalities (e.g. in gastroparesis, unexplained nausea and vomiting and functional dyspepsia) continue to motivate deeper inquiries into the nature and causes of gastrointestinal arrhythmias. In future, technical progress in EGG methods, new HR mapping devices and software, wireless slow wave acquisition systems and improved gastric pacing devices may achieve validated applications in clinical practice. Neurohormonal factors in arrhythmogenesis also continue to be elucidated and a deepening understanding of these mechanisms may open opportunities for drug design for treating arrhythmias. However, for all translational goals, it remains to be seen whether arrhythmia can be corrected in a way that meaningfully improves organ function and symptoms in patients.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
11
|
Du P, O'Grady G, Gao J, Sathar S, Cheng LK. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:481-93. [PMID: 23463750 DOI: 10.1002/wsbm.1218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental progress in investigating normal and disordered gastric motility is increasingly being complimented by sophisticated multiscale modeling studies. Mathematical modeling has become a valuable tool in this effort, as there is an ever-increasing need to gain an integrative and quantitative understanding of how physiological mechanisms achieve coordinated functions across multiple biophysical scales. These interdisciplinary efforts have been particularly notable in the area of gastric electrophysiology, where they are beginning to yield a comprehensive and integrated in silico organ modeling framework, or 'virtual stomach'. At the cellular level, a number of biophysically based mathematical cell models have been developed, and these are now being applied in areas including investigations of gastric electrical pacemaker mechanisms, smooth muscle electrophysiology, and electromechanical coupling. At the tissue level, micro-structural models are being creatively developed and employed to investigate clinically significant questions, such as the functional effects of ICC degradation on gastrointestinal (GI) electrical activation. At the organ level, high-resolution electrical mapping and modeling studies are combined to provide improved insights into normal and dysrhythmic gastric electrical activation. These efforts are also enabling detailed forward and inverse modeling studies at the 'whole body' level, with implications for diagnostic techniques for gastric dysrhythmias. These recent advances, together with several others highlighted in this review, collectively demonstrate a powerful trend toward applying mathematical models to effectively investigate structure-function relationships and overcome multiscale challenges in basic and clinical GI research.
Collapse
Affiliation(s)
- Peng Du
- The Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Electrogastrography (EGG) is a non-invasive method for the measurement of gastric myoelectrical activity. It was first discovered in 1921 and popularized in 1990s. EGG is attractive because it is non-invasive. However, due to its non-invasive nature, there have also been controversies regarding validity and applications of EGG. The aim of this review is to discuss the methodologies, validation and applications of EGG. Pros and cons of EGG will also be discussed in detail. First, the gastric slow wave and its correlation with gastric motility are presented. The association between gastric dysrhythmia and impaired gastric motility is reviewed. Secondly the method for recording the electrogastrogram is presented in detail and pitfalls in the recording and analysis of EGG are discussed. Thirdly, findings reported in the literature demonstrating the accuracy of EGG in recording gastric slow waves and gastric dysrhythmia are reviewed and discussed. The correlation of the electrogastrogram with gastric contraction is carefully discussed. Finally, applications of EGG in a few major areas are reviewed.
Collapse
Affiliation(s)
- Jieyun Yin
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas, USA. ; Ningbo Pace Translational Medical Research Center, Beilun, Ningbo, China
| | | |
Collapse
|
13
|
Yin J, Chen JDZ. Electrogastrography: methodology, validation and applications. J Neurogastroenterol Motil 2013; 19:5-17. [PMID: 23350042 PMCID: PMC3548127 DOI: 10.5056/jnm.2013.19.1.5] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022] Open
Abstract
Electrogastrography (EGG) is a non-invasive method for the measurement of gastric myoelectrical activity. It was first discovered in 1921 and popularized in 1990s. EGG is attractive because it is non-invasive. However, due to its non-invasive nature, there have also been controversies regarding validity and applications of EGG. The aim of this review is to discuss the methodologies, validation and applications of EGG. Pros and cons of EGG will also be discussed in detail. First, the gastric slow wave and its correlation with gastric motility are presented. The association between gastric dysrhythmia and impaired gastric motility is reviewed. Secondly the method for recording the electrogastrogram is presented in detail and pitfalls in the recording and analysis of EGG are discussed. Thirdly, findings reported in the literature demonstrating the accuracy of EGG in recording gastric slow waves and gastric dysrhythmia are reviewed and discussed. The correlation of the electrogastrogram with gastric contraction is carefully discussed. Finally, applications of EGG in a few major areas are reviewed.
Collapse
Affiliation(s)
- Jieyun Yin
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas, USA. ; Ningbo Pace Translational Medical Research Center, Beilun, Ningbo, China
| | | |
Collapse
|