1
|
Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Oxidative Stress and Lipid Peroxidation: Prospective Associations Between Ferroptosis and Delayed Wound Healing in Diabetic Ulcers. Front Cell Dev Biol 2022; 10:898657. [PMID: 35874833 PMCID: PMC9304626 DOI: 10.3389/fcell.2022.898657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic ulcers are one of the major complications of diabetes, and patients usually suffer from amputation and death due to delayed ulcer wound healing. Persistent inflammation and oxidative stress at the wound site are the main manifestations of delayed wound healing in diabetic ulcers. In addition, chronic hyperglycemia in patients can lead to circulatory accumulation of lipid peroxidation products and impaired iron metabolism pathways leading to the presence of multiple free irons in plasma. Ferroptosis, a newly discovered form of cell death, is characterized by intracellular iron overload and accumulation of iron-dependent lipid peroxides. These indicate that ferroptosis is one of the potential mechanisms of delayed wound healing in diabetic ulcers and will hopefully be a novel therapeutic target for delayed wound healing in diabetic patients. This review explored the pathogenesis of diabetic ulcer wound healing, reveals that oxidative stress and lipid peroxidation are common pathological mechanisms of ferroptosis and delayed wound healing in diabetic ulcers. Based on strong evidence, it is speculated that ferroptosis and diabetic ulcers are closely related, and have value of in-depth research. We attempted to clarify prospective associations between ferroptosis and diabetic ulcers in terms of GPX4, iron overload, ferroptosis inhibitors, AGEs, and HO-1, to provide new ideas for exploring the clinical treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ma Y, Song X, Ma T, Li Y, Bai H, Zhang Z, Hu H, Yuan R, Wen Y, Gao L. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes. Exp Ther Med 2020; 20:2623-2630. [PMID: 32765755 PMCID: PMC7401635 DOI: 10.3892/etm.2020.9021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis is a chronic joint disease which has a serious impact on the health and quality of life of affected humans and animals. As an inhibitor of inducible nitric oxide synthase (iNOS), aminoguanidine (AG) displays anti-inflammatory effects. The purpose of the present study was to investigate the effect of AG on the expression of iNOS and cyclooxygenase-2 (COX-2), and the activity of the NF-κB signaling pathway in rat chondrocytes stimulated by interleukin-1β (IL-1β). The viability of chondrocytes treated with AG (0.3, 1 or 3 mM) alone was determined using a Cell Counting Kit-8 assay. Subsequently, the chondrocytes were treated with either 10 ng/ml IL-1β alone, or co-treated with increasing concentrations of AG (0.3, 1 or 3 mM) and 10 ng/ml IL-1β. The protein levels of COX-2, iNOS, phosphorylated (p)-p65, p65, p-NF-κβ inhibitor α (IκBα), IκBα, p-inhibitor of NF-κβ-β (IKKβ) and IKKβ were evaluated by western blotting. NF-κB translocation was determined by immunofluorescence analysis. Western blotting and reverse transcription-quantitative PCR were used to detect expression levels of relevant proteins/genes. The results suggested that the inhibitory effect of AG on the protein and gene expression levels of iNOS and COX-2 in IL-1β-treated chondrocytes was dose-dependent. In addition, AG decreased the level of phosphorylation of IKKβ, IκBα and NF-κB p65, the degradation of IKKβ, IκBα and p65, and the translocation of NF-κB in IL-1β-stimulated chondrocytes. The most significant inhibitory effect of AG was observed at a concentration of 1 mM. Therefore, the present study suggested that AG may serve as a potential agent to reduce the inflammatory response of chondrocytes stimulated by IL-1β.
Collapse
Affiliation(s)
- Yuanqiang Ma
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaopeng Song
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Tianwen Ma
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Yue Li
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Hui Bai
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhiheng Zhang
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Hailong Hu
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Rui Yuan
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Yajing Wen
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Li Gao
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
3
|
Rosemary Leaf Extract Inhibits Glycation, Breast Cancer Proliferation, and Diabetes Risks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) generated from glycation can cause inflammation-related diseases such as diabetes and cancer. The bioactive compounds of rosemary extract (RE) were extracted and incubated with sugar-protein rich food and breast cancer cell MCF-7 to investigate its inhibitory effect on glycation and cancer cell proliferation, respectively. The diabetic rat was dosed with RE to investigate its effect on blood glucose, serum malondialdehyde (MDA), cholesterol (CHO), triglycerides (TG), low-density lipoproteins (LDLs), anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) activity, anti-oxidation capacity alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT), and glutamate oxaloacetate transaminase (GOT). The results show that RE contained seven major phenolics ranging from 17.82 mg/g for rosemarinic acid to 0.01 mg/g for ferulic acid on dry weight basis. It significantly lowered AGEs, carboxymethyl lysine (CML), and protein glycation in a sugar-protein rich intermediate-moisture-food (IMF) model. Furthermore, the survival rates of MCF-7 cells decreased to 6.02 and 2.16% after 96 h of incubation with 1.0 and 2.0 mg/mL of RE, respectively. The blood glucose, MDA, CHO, TG, and LDLs in diabetic rats of RE treatment were decreased. The RE treatment also enhanced the T-AOC and SOD activity. Furthermore, the RE treatment improved liver function through improving ALP, GPT, and GOT activities in diabetic rats. The results provide important information for the nutriaceutical and pharmaceutical application of rosemary extract.
Collapse
|
4
|
Shi X, Guan Y, Jiang S, Li T, Sun B, Cheng H. Renin-angiotensin system inhibitor attenuates oxidative stress induced human coronary artery endothelial cell dysfunction via the PI3K/AKT/mTOR pathway. Arch Med Sci 2019; 15:152-164. [PMID: 30697266 PMCID: PMC6348342 DOI: 10.5114/aoms.2018.74026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The renin-angiotensin system is associated with blood pressure regulation, inflammation, oxidative stress and insulin resistance. It can decrease intracellular oxidative stress. Stimulation with H2O2 leads to increased oxidative stress and activation of the AKT/mTOR pathway. However, the role of renin-angiotensin system inhibitors in oxidative stress-induced endothelial cell dysfunction and H2O2-induced AKT activation remains unclear. MATERIAL AND METHODS Human coronary artery endothelial cells (HCAECs) were used. The cells were treated with H2O2, captopril, the AKT inhibitor MK-2206, and the AKT activator SC79, either separately, or in combination. p53 and ICAM-1 expression, and p-eNOS, p-Akt and mTOR activation were measured by Western blot. Cell viability was assessed by MTT assay. Levels of reactive oxygen species (ROS) were assayed by flow cytometry. Proliferation was monitored by BrdU labeling, while cell migration and invasion were determined by wound healing and Transwell assays, respectively. RESULTS The renin-angiotensin system inhibitor captopril reversed H2O2-induced oxidative stress and apoptosis in HCAECs. Co-treatment with captopril and the AKT inhibitor MK-2206 reduced the H2O2-induced P53 and ICAM-1 protein expression (p < 0.05). The proliferation, migration and invasion of HCAECs were significantly enhanced by co-treatment with captopril and MK-2206 (p < 0.05). CONCLUSIONS The study revealed the protective effect of captopril against H2O2-induced endothelial cell dysfunction through the AKT/mTOR pathway, and its enhancement of cell survival. These findings provide new insights into the protective effects of captopril and novel therapeutic approaches to treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xuekun Shi
- Department of Cardiovasology, the Affiliated Cardiovascular Hospital of Qindao University, Qindao, Shaodong, China
| | - Yuhua Guan
- Department of Neurology, the BaZhou People’s Hospital of XinJiang Uygur Autonomous Region, XinJiang Uygur Autonomous Region, China
| | - Shaoyan Jiang
- Department of Cardiovasology, the Affiliated Cardiovascular Hospital of Qindao University, Qindao, Shaodong, China
| | - Tiandong Li
- Department of Cardiovasology, the Affiliated Cardiovascular Hospital of Qindao University, Qindao, Shaodong, China
| | - Bing Sun
- Department of Cardiovasology, the Affiliated Cardiovascular Hospital of Qindao University, Qindao, Shaodong, China
| | - Huan Cheng
- Department of Neurology, the BaZhou People’s Hospital of XinJiang Uygur Autonomous Region, XinJiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
The molecular biology in wound healing & non-healing wound. Chin J Traumatol 2017; 20:189-193. [PMID: 28712679 PMCID: PMC5555286 DOI: 10.1016/j.cjtee.2017.06.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/09/2017] [Accepted: 06/18/2017] [Indexed: 02/04/2023] Open
Abstract
The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed.
Collapse
|
6
|
Ramos C, Brito R, González-Montero J, Valls N, Gormaz JG, Prieto JC, Aguayo R, Puentes Á, Noriega V, Pereira G, Palavecino T, Rodrigo R. Effects of a novel ascorbate-based protocol on infarct size and ventricle function in acute myocardial infarction patients undergoing percutaneous coronary angioplasty. Arch Med Sci 2017; 13:558-567. [PMID: 28507569 PMCID: PMC5420620 DOI: 10.5114/aoms.2016.59713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION This study was designed to test the hypothesis that high-dose ascorbate prior to reperfusion followed by low chronic oral doses ameliorate myocardial reperfusion injury (MRI) in acute myocardial infarction patients subjected to primary percutaneous coronary angioplasty (PCA). MATERIAL AND METHODS A randomized double-blind placebo-controlled and multicenter clinical trial was performed on acute myocardial infarction (AMI) patients who underwent PCA. Sodium ascorbate (320 mmol/l, n = 53) or placebo (n = 46) was infused 30 min prior to PCA. Blood samples were drawn at enrolment (M1), after balloon deflation (M2), 6-8 h after M2 (M3) and at discharge (M4). Total antioxidant capacity of plasma (ferric reducing ability of plasma - FRAP), erythrocyte reduced glutathione (GSH) and plasma ascorbate levels were determined in blood samples. Cardiac magnetic resonance (CMR) was performed at 7-15 days and 2-3 months following PCA. Ninety-nine patients were enrolled. In 67 patients, the first CMR was performed, and 40 patients completed follow-up. RESULTS The ascorbate group showed significantly higher ascorbate and FRAP levels and a decrease in the GSH levels at M2 and M3 (p < 0.05). There were no significant differences in the infarct size, indexed end-systolic volume and ejection fraction at both CMRs. There was a significant amelioration in the decreased ejection fraction between the first and second CMR in the ascorbate group (p < 0.05). CONCLUSIONS Ascorbate given prior to reperfusion did not show a significant difference in infarct size or ejection fraction. However, it improved the change in ejection fraction determined between 7-15 days and 2-3 months. This result hints at a possible functional effect of ascorbate to ameliorate MRI.
Collapse
Affiliation(s)
| | - Roberto Brito
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jaime González-Montero
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicolás Valls
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan G. Gormaz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan C. Prieto
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Yang CT, Meng FH, Chen L, Li X, Cen LJ, Wen YH, Li CC, Zhang H. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine. Cell Physiol Biochem 2017; 41:742-754. [PMID: 28214842 DOI: 10.1159/000458734] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. METHODS The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. RESULTS We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. CONCLUSION The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China,Affiliated Cancer Hospital & Institute, Guangzhou, China
| | - Fu-Hui Meng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Li Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Xiang Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Lai-Jian Cen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Yu-Hua Wen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Cai-Chen Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China,Affiliated Cancer Hospital & Institute, Guangzhou, China,Quality Control Section of Academic Affairs, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|