3
|
Castelblanco E, Sanjurjo L, Barranco-Altirriba M, Falguera M, Hernández M, Soldevila B, Sarrias MR, Franch-Nadal J, Arroyo JA, Fernandez-Real JM, Alonso N, Mauricio D. The Circulating Fatty Acid Transporter Soluble CD36 Is Not Associated with Carotid Atherosclerosis in Subjects with Type 1 and Type 2 Diabetes Mellitus. J Clin Med 2020; 9:jcm9061700. [PMID: 32498389 PMCID: PMC7355534 DOI: 10.3390/jcm9061700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine the association of fatty acid transporter plasma soluble cluster of differentiation 36 (sCD36) with subclinical carotid atherosclerosis (SCA). A cross-sectional study was conducted in 1023 subjects, 225 with type 1 diabetes (T1D), 276 with type 2 diabetes (T2D) and 522 who were nondiabetic. Carotid atherosclerotic plaque (CAP) presence was determined using B-mode carotid ultrasound imaging. sCD36 were analysed by ELISA, and CD36 surface receptor and mRNA expression were measured by flow cytometry and real-time PCR. Logistic regression models were used to evaluate sCD36 as a biomarker of SCA. Up to 376 (36.75%) participants had at least one CAP, 76 T1D, 164 T2D and 136 without diabetes, while the remaining 647 (63.25%) did not have any CAP. There were no differences in sCD36 between patients with and without CAP in T1D (p = 0.287) or T2D (p = 0.513). Although nondiabetic subjects with plaques had lower sCD36 levels than those without (p = 0.023), the multivariate models revealed no association of sCD36 with CAP in any of the three study groups. No differences were found in surface CD36 or CD36 mRNA expression between the patients with and without CAP. sCD36 is not associated with SCA in type 1 or type 2 diabetic or in nondiabetic subjects.
Collapse
Affiliation(s)
- Esmeralda Castelblanco
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
| | - Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (L.S.); (M.-R.S.)
| | - Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
| | - Mireia Falguera
- Biomedical Research Institute of Lleida, University of Lleida, 25198 Lleida, Spain; (M.F.); (M.H.)
- Primary Health Care Centre Cervera, Gerència d’Atenció Primaria, Institut Català de la Salut, 25200 Cervera, Spain
| | - Marta Hernández
- Biomedical Research Institute of Lleida, University of Lleida, 25198 Lleida, Spain; (M.F.); (M.H.)
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLleida, 25198 Lleida, Spain
| | - Berta Soldevila
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Endocrinology & Nutrition, University Hospital Germans Trias i Pujol, IGTP, 08916 Badalona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (L.S.); (M.-R.S.)
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Josep Franch-Nadal
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Juan Antonio Arroyo
- Department of Internal Medicine, Hypertension and Vascular Risk Unit, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - José-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology & Nutrition, Hospital Dr Josep Trueta, IDIBGI, 17007 Girona, Spain;
- Centre for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBEROBN), 17007 Girona, Spain
| | - Nuria Alonso
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLleida, 25198 Lleida, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Correspondence: (N.A.); (D.M.); Tel.: +34-934-978-860 (N.A.); +34-935-565-661 (D.M.)
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Correspondence: (N.A.); (D.M.); Tel.: +34-934-978-860 (N.A.); +34-935-565-661 (D.M.)
| |
Collapse
|
6
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|