1
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
2
|
Yao SJ, Ma HS, Liu GM, Gao Y, Wang W. Increased IL-1α expression is correlated with bladder cancer malignant progression. Arch Med Sci 2023; 19:160-170. [PMID: 36817666 PMCID: PMC9897080 DOI: 10.5114/aoms.2020.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/07/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION To explore the function of interleukin 1α (IL-1α) in bladder cancer (BCa). MATERIAL AND METHODS Immunohistochemistry (IHC) was used to test the protein expression of IL-1α in BCa tissues. The relationship between IL-1α and clinical characteristics was analyzed by the Kaplan-Meier curve method. The gene and protein expression was tested by reverse transcription quantitative polymerase chain reaction (RT-q-PCR) and western blot, respectively. Colony formation and MTT assays were used to detect the potential of proliferation in vitro, and scratch and transwell chamber assays were used to detect the potential of invasion in vitro. Markers of proliferation such as Ki-67 and proliferating cell nuclear antigen (PCNA) and markers of invasion such as MMP-2 and MMP-9 were detected by western blot. Xenograft study was used for the in vivo experiment. RESULTS We found that IL-1α was highly expressed in BCa patients while highly expressed IL-1α was significantly related to short overall survival and progression-free survival in BCa as well. Moreover, knockdown of IL-1α might inhibit the ability of cancer cells to proliferate and invade or migrate both in vitro and in vivo. CONCLUSIONS Our findings suggested that IL-1α might be a therapy target for BCa malignant progression.
Collapse
Affiliation(s)
- Shi-Jie Yao
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Hong-Shun Ma
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Guang-Ming Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Yue Gao
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
3
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
4
|
One-pot synthesis of cyclic-aminotropiminium carboxylate derivatives with DNA binding and anticancer properties. Commun Chem 2022; 5:179. [PMID: 36697960 PMCID: PMC9814901 DOI: 10.1038/s42004-022-00798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Tropolone, a nonbenzenoid aromatic molecule, is a constituent of troponoid natural products possessing a wide range of bioactivities, including anticancer. This report describes the one-pot synthesis and mechanistic studies of fifteen fluorescent Caryl-Nalkyl-substituted cyclic-aminotroponiminium carboxylate (cATC) derivatives by unusual cycloaddition and rearrangement reactions. Herein, the biochemical studies of four cATC derivatives reveal a non-intercalative binding affinity with DNA duplex. In vitro/in vivo studies show strong anti-tumor activity in three cATC derivatives. These derivatives enter the cells and localize to the nucleus and cytoplasm, which are easily traceable due to their inherent fluorescence properties. These three cATC derivatives reduce the proliferation and migration of HeLa cells more than the non-cancer cell line. They induce p38-p53-mediated apoptosis and inhibit EMT. In xenograft-based mouse models, these cATC derivatives reduce tumor size. Overall, this study reports the synthesis of DNA binding fluorescent Caryl-Nalkyl-cyclic-aminotroponiminium derivatives which show anti-tumor activity with the minimum side effect.
Collapse
|
5
|
Evening Primrose Extracts Inhibit PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Regulating Cell-Cycle-Related Proteins. Curr Issues Mol Biol 2022; 44:1928-1940. [PMID: 35678660 PMCID: PMC9164085 DOI: 10.3390/cimb44050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.
Collapse
|
6
|
Hinokitiol Dysregulates Metabolism of Carcinoma Cell Lines and Induces Downregulation of HPV16E6 and E7 Oncogenes and p21 Upregulation in HPV Positive Cell Lines. Processes (Basel) 2022. [DOI: 10.3390/pr10040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Hinokitiol (β-thujaplicin), isolated from the wood of Chamaecyparis taiwanensis, has a wide variety of biological properties including anti-inflammatory, anti-microbial, and anti-tumor effects. Therefore, hinokitiol has become a frequent additive in oral and other healthcare products. Objectives: Our goal was to determine the anti-tumor activity of hinokitiol on human papillomavirus (HPV) positive (n = 3) and negative (n = 2) cell lines derived from cervical or head and neck squamous cell carcinoma (HNSCC) and keratinocyte cell lines (n = 3) transformed spontaneously or with HPV16E6 and E7 oncogenes. Methods: The cell-lines were exposed to hinokitiol at different concentrations (0–200 µM) for 24 h. Cell metabolism, proliferation, and the cell cycle distribution were assessed by MTT- and 3H-thymidine incorporation and flow cytometry. Expressions of p21 and on HPV16E6 and E7 oncogenes were assessed by qPCR. Results: In all carcinoma cell lines, hinokitiol treatment declined the metabolic activity irrespective of the HPV status. This decline was statistically significant, however, only in HPV-positive cell lines CaSki and UD-SCC-2 when exposed to hinokitiol concentrations at 100 and 200 µM, respectively (p < 0.05). Immortalized cell lines, HMK and HPV-positive IHGK, were more sensitive as a similar metabolic effect was achieved at lower hinokitiol concentrations of 3.1, 6.25, and 50 µM, respectively. Hinokitiol blocked DNA synthesis of all carcinoma cell lines without evident association with HPV status. G1 cell cycle arrest and p21 upregulation was found in all cell lines after hinokitiol treatment at higher concentration. However, when the p21 results of all HPV-positive cells were pooled together, the increase in p21 expression was statistically significantly higher in HPV-positive than in HPV-negative cell lines (p = 0.03), but only at the highest hinokitiol concentration (200 µM). In HPV-positive cell lines hinokitiol declined the expression of HPV16E7 and E6 along the increase of p21 expression. The dose-dependent inverse correlation between p21 and E7 was statistically significant in SiHa cells (r = −0.975, p-value = 0.03) and borderline in UD-SCC-2 cells (r = −0.944, p-value = 0.06), in which p21 and E6 were also inversely correlated (r = −0.989). Conclusions: Our results indicate that hinokitiol might have potential in preventing the progress of immortalized cells toward malignancy and the growth of malignant lesions. Hinokitiol can also influence on the progression of HPV-associated lesions by downregulating the E6 and E7 expression.
Collapse
|
7
|
Jin X, Zhang M, Lu J, Duan X, Chen J, Liu Y, Chang W, Lou H. Hinokitiol chelates intracellular iron to retard fungal growth by disturbing mitochondrial respiration. J Adv Res 2022; 34:65-77. [PMID: 35024181 PMCID: PMC8655124 DOI: 10.1016/j.jare.2021.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction The increasing morbidity of fungal infections and the prevalence of drug resistance highlighted the discovery of novel antifungal agents and investigation of their modes of action. Iron chelators have been used to treat superficial fungal infections or potentiate the efficacy of certain antifungal drugs. Hinokitiol exhibits potent antifungal activity and iron-chelating ability. However, their relationships have not been established. Objectives This study aims to explore the selectivity of hinokitiol against fungal cells and mammalian cells and determine the role of iron-chelating for the antifungal activity of hinokitiol. Methods Iron probe FeRhonox-1 was used to determine intracellular Fe2+ content. 5-Cyano-2,3-ditolyl tetrazolium chloride probe and Cell Counting Kit-8 were used to detect the mitochondrial respiratory activities. Quantitative real-time PCR and rescue experiments were performed to determine the effect of iron on the antifungal activity of hinokitiol. The effects of hinokitiol on fungal mitochondria were further evaluated using reactive oxygen species probes and several commercial Assay Kits. The ability of hinokitiol to induce resistance in Candida species was carried out using a serial passage method. The in vivo therapeutic effect of hinokitiol was evaluated using Galleria mellonella as an infectious model. Results Hinokitiol was effective against a panel of Candida strains with multiple azole-resistant mechanisms and persistently inhibited Candida albicans growth. Mechanism investigations revealed that hinokitiol chelated fungal intracellular iron and inhibited the respiration of fungal cells but had minor effects on mammalian cells. Hinokitiol further inhibited the activities of mitochondrial respiratory chain complexes I and II and reduced mitochondrial membrane potential, thereby decreasing intracellular ATP synthesis and increasing detrimental intracellular reductive stress. Moreover, hinokitiol exhibited low potential for inducing resistance in several Candida species and greatly improved the survival of Candida-infected Galleria mellonella. Conclusions These findings suggested the potential application of hinokitiol as an iron chelator to treat fungal infections.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Lu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Li Y, Cheng X, Yan J, Jiang S. CTHRC1 facilitates bladder cancer cell proliferation and invasion through regulating the PI3K/Akt signaling pathway. Arch Med Sci 2022; 18:183-194. [PMID: 35154539 PMCID: PMC8827022 DOI: 10.5114/aoms.2019.85718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Emerging evidence has illustrated that Collagen triple helix repeat containing 1 (CTHRC1) is crucial for tumorigenesis and development. However, the effects of CTHRC1 on bladder cancer progression remain largely unclear. Here, we aim to investigate the function and mechanism of CTHRC1 in behaviors of bladder cancer cells in vitro and in vivo. MATERIAL AND METHODS Interference assays were applied to determine the biological functions of CTHRC1. The expression of CTHRC1 was examined by quantitative real time-PCR (qRT-PCR), Western blot and immunohistochemical (IHC) analysis. Effects of CTHRC1 on proliferation, migration and invasion were evaluated by CCK-8, colony formation, flow cytometry, EdU staining, wound healing, transwell and western blot assays. Bladder cancer cells transfected with sh-CTHRC1 were injected into nude mice to explore the effect of CTHRC1 on tumorigenesis in vivo. RESULTS CTHRC1 expression was increased in bladder cancer tissues and cell lines compared with normal controls, and associated with advanced clinical stage and lymph node metastasis. Also, patients with high levels of CTHRC1 expression were found to have a poor prognosis. Knockdown of CTHRC1 alleviated bladder cancer cell proliferation, migration and invasion in vitro and impeded tumorigenesis in vivo. Moreover, mechanistic investigation indicated that CTHRC1 could regulate the PI3K/Akt signaling pathway. CONCLUSIONS Our data demonstrated that CTHRC1 played an oncogenic role in bladder cancer by modulating the PI3K/Akt signaling pathway, which sheds novel light on diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Yubing Li
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiasheng Yan
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shaobo Jiang
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Song Z, Xing F, Jiang H, He Y, Lv J. Long non-coding RNA TP73-AS1 predicts poor prognosis and regulates cell proliferation and migration in cervical cancer. Arch Med Sci 2022; 18:523-534. [PMID: 35316908 PMCID: PMC8924823 DOI: 10.5114/aoms.2019.87686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cervical cancer is one of the most common malignant tumors in women, which seriously affects women's health, especially in developing countries. This study aims to investigate novel molecular markers for poor prognosis of cervical cancer to achieve correct guidance of clinical treatment, accurate assessment of prognosis, and provide a new basis for the choice of reasonable treatment options for cervical cancer patients. MATERIAL AND METHODS QRT-PCR was employed to investigate the expression of lncRNA TP73-AS1 in cervical cancer tissues and cell lines. COX multivariate analysis showed the relationship between TP73-AS1 expression and clinicopathological features of patients with cervical cancer. Colony formation and MTT assay detected the effect of TP73-AS1 on proliferation of cervical cancer cells. The effect of TP73-AS1 on migration and invasion of cervical cancer cells was determined by the wound-healing assay and transwell assay. Western blot was performed to assess the expression of EMT markers. RESULTS This study showed that lncRNA TP73-AS1 was up-regulated in cervical cancer tissues and cell lines (p < 0.001), and high expression of TP73-AS1 could be considered as an independent prognostic factor (p < 0.05). Moreover, lncRNA TP73-AS1 promotes cervical cancer cell migration and invasion, and knockdown of TP73-AS1 inhibits the growth of cervical cancer cells (p < 0.001). CONCLUSIONS Our results indicated that lncRNA TP73-AS1 was up-regulated in cervical cancer tissues and cell lines, predicting poor prognosis of cervical cancer and regulating cell proliferation and migration.
Collapse
Affiliation(s)
- Zhijiao Song
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Feng Xing
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanying He
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Abstract
Hinokitiol is a natural bioactive compound found in several aromatic and medicinal plants. It is a terpenoid synthetized and secreted by different species as secondary metabolites. This volatile compound was tested and explored for its different biological properties. In this review, we report the pharmacological properties of hinokitiol by focusing mainly on its anticancer mechanisms. Indeed, it can block cell transformation at different levels by its action on the cell cycle, apoptosis, autophagy via inhibiting gene expression and dysregulating cellular signaling pathways. Moreover, hinokitiol also exhibits other pharmacological properties, including antidiabetic, anti-inflammatory, and antimicrobial effects. It showed multiple and several effects through its inhibition, interaction and/or activation of the main cellular targets inducing these pathologies.
Collapse
|
11
|
Tuo H, Yao B, He B, Yu S, Li D, Li W, Jin L. Silence of Insulin-Like Growth Factor 2 mRNA-Binding Protein 1 Prevents Vascular Smooth Muscle Cells Proliferation via Nuclear Factor of Activated T Cells Isoform-3/Ca 2+/Calmodulin Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increased proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis (AS), and the insulin like growth factor 2 (IGF2) is involved in AS through effects on VSMCs growth and migration. The IGF2 mRNA-binding protein 1(IGF2BP1) is a secreted
protein that can bind to IGF2 and regulate its localization, however, whether IGF2BP1 could regulate VSMCs proliferation remains to be elucidated. This study aimed to investigate the role of IGF2BP1 in VSMCs proliferation and uncover the potential mechanism. Primary human aortic VSMCs that
transfected with or without shRNA-IGF2BP1 were stimulated by platelet-derived growth factor-BB (PDGF-BB), and then cell proliferation, intracellular Ca2+ level, cell apoptosis and the expression of IGF2BP1, calmodulin (CaM) and cell cycle-related proteins were detected. RNA pull
down assay was used to determine the interaction between IGF2BP1 and nuclear factor of activated T cells isoform-3 (NFATc3). We found that PDGF-BB promoted cell proliferation and enhanced IGF2BP1 protein expression in a concentration-dependent manner. The 10 μg/L PDGF-BB significantly increased
intracellular Ca2+ level, NFATc3, CaM and calcineurin A protein expression, TUNEL-positive cells, and the expression of cell cycle-related proteins cyclin D1/E1/B1. However, knockdown of IGF2BP1 significantly blunted all these effects induced by PDGF-BB. In addition, IGF2BP1 could
bind to NFATc3 RNA. Collectively, knockdown of IGF2BP1 could inhibit PDGFBB- induced VSMCs proliferation via targeting NFATc3/Ca2+/calmodulin pathway and disturbing the effect of NFATc3/ on cell cycle.
Collapse
Affiliation(s)
- Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Bing He
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Shiqian Yu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Danni Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| |
Collapse
|
12
|
Liu YZ, Xiao X, Hu CT, Dai Y, Qu SL, Huang L, Zhang C. SUMOylation in atherosclerosis. Clin Chim Acta 2020; 508:228-233. [DOI: 10.1016/j.cca.2020.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
|
13
|
Zhang Y, Chen X. miR-18a-5p Promotes Proliferation and Migration of Vascular Smooth Muscle Cells by Activating the AKT/Extracellular Regulated Protein Kinases (ERK) Signaling Pathway. Med Sci Monit 2020; 26:e924625. [PMID: 32458821 PMCID: PMC7275643 DOI: 10.12659/msm.924625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background microRNAs (miRNAs) play important roles in abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), which lead to restenosis in coronary artery disease. Nevertheless, the role of miR-18a-5p and how it works in VSMCs remain unknown. Material/Methods miR-18a-5p expression was determined by fluorescence quantitative real-time polymerase chain reaction (qRT-PCR) analysis of tissues from 20 patients with stent restenosis, and rats with carotid artery injury, as well as VSMCs. A cell viability assay was used to measure cell proliferation. Cell migration abilities were assessed by transwell migration assay and wound healing assays. To identify miR-18a-5p targets, a dual-luciferase reporter assay was performed. Western blot analysis and immunofluorescence techniques were used to assess the protein expression levels of AKT and ERK. The rescue effects of miR-18a-5p on the proliferation or migration of VSMCs were evaluated after exposure to the AKT inhibitor MK-2206 and ERK inhibitor PD98059. Results The expression level of miR-18a-5p was significantly higher in the blood serum of patients with stent restenosis and in rats with carotid artery injury, and the expression of AKT and ERK was higher after carotid artery injury. The proliferation and migration abilities of VSMCs were accelerated by the overexpression of miR-18a-5p. It was found that miR-18a-5p directly modulates AKT/ERK signaling. Upregulated miR-18a-5p increased the protein expression levels of AKT and ERK and we found a positive correlation between miR-18a-5p expression level and expression of AKT and ERK. Additionally, the promoting effect of miR-18a-5p on VSMCs proliferation, migration, and invasion was reversed by ERK inhibitor or AKT inhibitor. Conclusions miR-18a-5p can promote proliferation of VSMCs by activating the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Yuanheng Zhang
- Department of Cardiovascular Medicine, Third Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Xujiang Chen
- Department of Cardiovascular Medicine, Third Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| |
Collapse
|
14
|
Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Tongue Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6387545. [PMID: 32090103 PMCID: PMC6996685 DOI: 10.1155/2020/6387545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Abstract
Background Oral carcinoma is the sixth most common cancer and is a serious public health problem, and tongue squamous cell carcinoma (TSCC) is the most common type of oral carcinoma. Kinesin family member 22 (KIF22), also called as kinesin-like DNA binding protein (KID), is a microtubule-based motor protein and binds to both microtubules and chromosomes, transporting organelles, protein, and mRNA. This research aimed at investigating the prognostic significance of KIF22 in TSCC. Patients and Methods. This retrospective research collected 82 paired tissues with TSCC. KIF22 protein expression level was detected by immunohistochemical staining. Suppression of KIF22 with shRNA in CAL-27 and SCC-15 cells was to observe cell proliferation in vitro and xenograft tumor growth in vivo. Results In TSCC tissues, the protein expression level of KIF22 was increased and correlated with tumor stage, clinical stage, and lymphatic metastasis (P=0.013, P=0.013, P=0.013, Conclusion KIF22 might play an important role in the progression of TSCC and could serve as a therapeutic target for TSCC.
Collapse
|
15
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
16
|
Wang X, Li D, Chen H, Wei X, Xu X. Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells. Med Sci Monit 2019; 25:7645-7651. [PMID: 31603865 PMCID: PMC6800467 DOI: 10.12659/msm.915681] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The long noncoding RNA LIPCAR is a type of transcription product (>200 nucleotides long). Recent studies demonstrated that LIPCAR is a potential biomarker in cardiovascular disease and can predict survival in patients with cardiovascular disease. Therefore, the present study explored the role of LIPCAR in the regulation of proliferation, migration, and change in phenotype of vascular smooth muscle cells. Material/Methods Human vascular smooth muscle cells (VSMCs) were treated with 20 g/mL oxidatively modified low-density lipoprotein (ox-LDL) or 20 ng/ml platelet-derived growth factor BB (PDGF-BB) for 24 h, then the expression levels of LIPCAR were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. LIPCAR-overexpressing plasmids were transfected into VSMCs. After transfection, cell proliferation and migration were measured using the Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The levels of α-smooth muscle actin (α-SMA) a molecular marker of the contractile VSMC phenotype, were measured using Western blot and immunofluorescence assays. Protein levels of cyclin-dependent kinase-2 (CDK2), proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor A (VEGF-A), and angiopoietin-2 (Ang-2) were assessed by Western blot. The level of tissue factor (TF) was measured by enzyme-linked immunosorbent assay (ELISA). Results Treatment with PDGF-BB or ox-LDL significantly increased levels of LIPCAR in VSMCs. Overexpression of LIPCAR markedly promoted cell proliferation and migration. Further, upregulation of LIPCAR increased CDK2, p21, PCNA, MMP2, MMP9, VEGF-A, Ang-2, and TF expression and decreased p21 expression. In addition, LIPCAR significantly decreased α-SAM expression. Conclusions Together, our data suggest that overexpression of LIPCAR promotes cell proliferation, migration, and phenotypic switch of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Dongbin Li
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Hao Chen
- Department of Cardiology, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiaogang Wei
- Department of Cardiology, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiangmei Xu
- Department of Cardiology, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
17
|
Huang S, Xu T, Huang X, Li S, Qin W, Chen W, Zhang Z. miR-21 regulates vascular smooth muscle cell function in arteriosclerosis obliterans of lower extremities through AKT and ERK1/2 pathways. Arch Med Sci 2019; 15:1490-1497. [PMID: 31749878 PMCID: PMC6855157 DOI: 10.5114/aoms.2018.78885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Arteriosclerosis obliterans (ASO) is a disease that affects the lower extremities. The mechanism of ASO is associated with the proliferation and migration of vascular smooth muscle cells (VSMCs). miR-21 plays a key role in various biological processes of the cardiovascular system, associated with the proliferation, migration and apoptosis of VSMCs. It is unclear, however, if miR-21 is involved in the regulation of ASO. MATERIAL AND METHODS Human aortic smooth muscle cells (HASMCs) were transfected with miR-21 mimics and co-treated with protein kinase B (AKT) or a mitogen-activated protein kinase (ERK) inhibitor. Expression levels of p-AKT or p-ERK were measured by western blot. Cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and visualized under a fluorescence microscope. Cell proliferation was monitored by bromodeoxyuridine (BrdU) labeling; cell migration and invasion were determined by the Transwell assay. RESULTS miR-21 was upregulated in arteries of ASO, the pathogenesis of which involved the activation of p-AKT and p-ERK1/2. Inhibition of the AKT or ERK activity was consistent with the attenuation of the miR-21-induced HASMC migration and proliferation. HASMCs co-treated with miR-21 mimics and AKT or ERK inhibitor showed attenuation of the miR-21-induced high elongation ratio. CONCLUSIONS We demonstrated that the expression of miR-21 in HASMCs could find potential application in cardiac therapy. Inhibition of the activity of AKT or ERK could attenuate miR-21-induced cell proliferation and migration as well as altering morphology of HASMCs. The present study aimed to indicate the potential roles of miR-21 in ASO processes, and the results provided a novel therapeutic approach for treating ASO and new targets for preventing ASO in earlier stages.
Collapse
Affiliation(s)
- Shuichuan Huang
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tuo Xu
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xianying Huang
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyi Li
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyi Qin
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weijie Chen
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Zhang
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Buranjiang G, Kuerban R, Abuduwanke A, Li X, Kuerban G. MicroRNA-331-3p inhibits proliferation and metastasis of ovarian cancer by targeting RCC2. Arch Med Sci 2019; 15:1520-1529. [PMID: 31749881 PMCID: PMC6855167 DOI: 10.5114/aoms.2018.77858] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Epithelial ovarian carcinoma (EOC) is one of the most lethal gynecologic malignancies, with a poor 5-year survival rate. Numerous studies have shown that microRNAs participate in the malignant behavior of ovarian cancer cells by directly targeting multiple oncogenes or tumor suppressor genes. MATERIAL AND METHODS Reverse transcription-PCR was used to determine the level of miR-331-3p in EOC. Cells proliferation was measured with the Cell Counting Kit-8. Cell mobility were measured by wound-healing assay. Cell migration and invasion were measured by transwell assay. Luciferase assays were used to demonstrate that RCC2 was a directed target of miR-331-3p in EOC. Western blots were used to measure the protein expression. RESULTS We found that the expression of microRNA-331-3p (miR-331-3p) in ovarian cancer cell lines is reduced (p < 0.01), and an increase of expression of miR-331-3p in ovarian cancer cells significantly inhibits cell proliferation (p < 0.001). Transwell and wound-healing assays showed that miR-331-3p inhibits the cell motility of ovarian cancer cells (p < 0.001). Regulator of chromosome condensation 2 (RCC2) was predicted to be a novel target for miR-331-3p. Our luciferase activity assay confirmed that RCC2 is directly targeted by miR-331-3p. RCC2 was negatively regulated by miR-331-3p (p < 0.001), and overexpression of RCC2 could restore the malignant behaviors of ovarian cancer cells, which was suppressed by miR-331-3p. CONCLUSIONS These data indicate that miR-331-3p can inhibit proliferation, migration, and invasion of ovarian cancer cells via directly targeting RCC2. Our study provides potential therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Gulimire Buranjiang
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Reziya Kuerban
- Department of Gynecological Special Disease Clinic, Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Ailikemu Abuduwanke
- Department of Pediatric Ward, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, Xinjiang, China
| | - Xiaowen Li
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Gulina Kuerban
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| |
Collapse
|