1
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
2
|
Krzysztofik M, Wilk M, Pisz A, Kolinger D, Tsoukos A, Zając A, Stastny P, Bogdanis GC. Acute Effects of Varied Back Squat Activation Protocols on Muscle-Tendon Stiffness and Jumping Performance. J Strength Cond Res 2023; 37:1419-1427. [PMID: 36727712 DOI: 10.1519/jsc.0000000000004453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Krzysztofik, M, Wilk, M, Pisz, A, Kolinger, D, Tsoukos, A, Zając, A, Stastny, P, and Bogdanis, GC. Acute effects of varied back squat activation protocols on muscle-tendon stiffness and jumping performance. J Strength Cond Res 37(7): 1419-1427, 2023-Intensity, movement velocity, and volume are the principal factors to successfully use postactivation performance enhancement. Therefore, 15 resistance-trained volleyball players completed 3 different back squat configurations as a conditioning activity (CA) in randomized order: (a) 3 sets of 3 repetitions at 85% 1RM (HL); (b) a single set of back squats at 60% 1RM until 10% mean velocity loss (VB); (c) and 2 sets of back squats at 60% 1RM until 10% mean velocity loss (2VB) on subsequent countermovement jump performance, Achilles tendon, and vastus lateralis stiffness with concomitant front thigh skin surface temperature assessment. The measurements were performed 5 minutes before the CA and at 2, 4, 6, 8, and 10 minutes. The jump height was significantly increased in the second minute and at peak, post-CA compared with baseline for all conditions ( p = 0.049; ES = 0.23 and p < 0.001; ES = 0.37). Skin surface temperature was significantly increased for all post-CA time points compared with baseline in the 2VB condition ( p from <0.001-0.023; ES = 0.39-1.04) and in the fourth minute and at peak post-CA in HL condition ( p = 0.023; ES = 0.69 and p = 0.04; ES = 0.46), whereas for the VB condition, a significant decrease in peak post-CA was found ( p = 0.004; ES = -0.54). Achilles tendon stiffness was significantly decreased for second, fourth, eighth, 10th, and peak post-CA in comparison to baseline for all conditions ( p from p = 0.004-0.038; ES = -0.47 to -0.69). Vastus lateralis stiffness was significantly decreased for peak post-CA compared with baseline for all conditions ( p = 0.017; ES = -0.42). We recommend using a single set of barbell squats with a 10% velocity loss as a mechanism of fatigue control to acutely improve jump height performance and avoid unnecessary increases in training volume.
Collapse
Affiliation(s)
- Michał Krzysztofik
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland; and
| | - Michał Wilk
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland; and
| | - Anna Pisz
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| | - Dominik Kolinger
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| | - Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland; and
| | - Petr Stastny
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland; and
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Pisz A, Blazek D, Jebavy R, Kolinger D, Wilk M, Krzysztofik M, Stastny P. Antagonist activation exercises elicit similar post-activation performance enhancement as agonist activities on throwing performance. BMC Sports Sci Med Rehabil 2023; 15:44. [PMID: 36973790 PMCID: PMC10044369 DOI: 10.1186/s13102-023-00657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND This study aimed to determine the acute effect of agonist and antagonist conditioning activities (CA) on medicine ball throw performance among female softball players. METHODS Thirteen national-level female softball players (age 22.2 ± 3.1 years; body mass 68.3 ± 11.3 kg; softball experience 7.3 ± 2.4 years) performed 3 medicine ball chest throws before conditioning activity (CA) and after CA respectively in 3rd, 6th, and 9th minute. CA was the bench press and bent-over barbell row with 2 sets of 4 repetitions at 60% and 80% of one-repetition maximum, and 2 sets of 4 repetition bodyweight push up. RESULTS Two-way ANOVA revealed an increase in throwing distance (p < 0.001) after bent over barbell row and push-up exercise, and an increase in throwing speed (p < 0.001) after bench press and push-up. All performance increases were in moderate effect size (Cohen d 0.33-0.41), and no differences were found between the experimental CA. CONCLUSIONS We conclude that upper body throwing performance is similar after antagonist exercise and agonist CA, both agonist and antagonist CA increase muscle power. In the resistance training practice, we recommend the interchange of agonist and antagonist CA using bodyweight push-up or submaximal intensity (80% of 1RM) bench press and bent over barbell row to succeed post-activation performance enhancement in upper limbs.
Collapse
Affiliation(s)
- A Pisz
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - D Blazek
- Athletic Department, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - R Jebavy
- Athletic Department, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - D Kolinger
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - M Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - M Krzysztofik
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - P Stastny
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Silva GCPSMD, Lima VP, Santos AOBD, Castro JBPD, Silva YRL, Rosa G, Nunes RDAM, Vale RGDS. Analysis of Time Under Tension in Bench Press Exercise in Recreationally Trained Individuals: A Systematic Review. Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Błażkiewicz M, Hadamus A. The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press-Preliminary Report. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249762. [PMID: 36560129 PMCID: PMC9781216 DOI: 10.3390/s22249762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 05/14/2023]
Abstract
The overhead press is a multi-joint exercise that has the potential to use a high external load due to the cooperation of many muscle groups. The purpose of this study was to compare the activity of shoulder and back muscles during the overhead press with a kettlebell and a dumbbell. Surface electromyography (EMG) for the anterior and posterior deltoid, upper and lower trapezius, serratus anterior, and spinal erectors was analysed for 20 subjects. Participants performed the four trials of pressing kettlebell and dumbbell, weighted at 6 kg, and 70% of one maximum repetition (1RM) in the sitting position. Statistical analysis was performed using a non-parametric Friedman test and a post-hoc test of Dunn Bonferroni. No significant differences were found in the activation of assessed muscles when comparing dumbbell to kettlebell press trials with the same load (6 kg and 70% of 1RM). However, muscle activity of all muscles except the upper trapezius was always higher for kettlebell pressing. Different center of gravity locations in the kettlebell versus the dumbbell can increase shoulder muscle activity during the overhead press. However, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Michalina Błażkiewicz
- Faculty of Rehabilitation, The Józef Piłsudski University of Physical Education in Warsaw, 00-809 Warsaw, Poland
| | - Anna Hadamus
- Department of Rehabilitation, Faculty of Dental Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence:
| |
Collapse
|
6
|
Changes in Heart Rate Variability and Post‐Exercise Blood Pressure from Manipulating Rest Intervals Between Sets of Resistance Training. J Hum Kinet 2022; 82:61-73. [PMID: 36196336 PMCID: PMC9465723 DOI: 10.2478/hukin-2022-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to compare blood pressure and heart rate variability responses in physically active men after performing resistance training sessions with rest intervals of 1 min, 2 min and 3 min. Eighteen men (age, 21.6±1.1 years; body mass, 74.1±8.1 kg; body height, 175.3±7.1 cm) who performed 180min of physical activity per week participated in this study. After determining the 15RM loads for the squat, bench press, bent-over row and deadlift, participants performed a resistance training session. Participants performed three resistance training protocols in randomized counterbalanced order. Each experimental protocol comprised different rest intervals between sets of resistance training exercises (1min, 2min or 3min). During each experimental session, participants performed three sets with a 15RM load. Blood pressure and heart rate variability were measured before and for 2h after each session. The results demonstrated a greater blood pressure (p<0.05) reduction with a longer rest interval. There was no statistically significant difference in heart rate variability changes between groups. These results indicate that 2min and 3min rest intervals while using a 15RM load provide the best stimulus for a blood pressure reduction response after a resistance training session. Our findings suggest that strength and conditioning professionals should prescribe 2min or 3min rest intervals when resistance training is performed with a 15RM load if the aim is to obtain an acute reduction in blood pressure after a resistance training session.
Collapse
|
7
|
Effect of different eccentric tempos on hypertrophy and strength of the lower limbs. Biol Sport 2022; 39:443-449. [PMID: 35309524 PMCID: PMC8919893 DOI: 10.5114/biolsport.2022.105335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to evaluate the effects of altering the duration of the eccentric phase in isotonic contractions on muscle hypertrophy and strength of the quadriceps femoris. Ten healthy young adults (8 men and 2 women: Height: 173.3 ± 9.6 cm: Body mass: 69.84 ± 10.88 kg; Body fat: 19.47 ± 8.42%; Age: 25.3 ± 4.8 years) performed unilateral isotonic knee extension exercise, whereby each leg was randomly allocated to perform the eccentric phase of movement with a duration of either 2 seconds (G2S) or 4 seconds (G4S). Both conditions carried out the concentric phase of each repetition at a 1 second duration with no rest in the transition phases. Each condition performed 5 sets using 70% of 1 repetition maximum until muscle failure with 3 minutes of rest between sets for 8 weeks. The change in muscle strength was assessed by 1RM knee extension and muscle thickness was assessed by A-mode ultrasound. For each outcome variable, linear mixed-effects models were fit using restricted maximum likelihood. Hedges’ g effect sizes were calculated to provide insights into the magnitude of effects. Results showed all muscles increased in size over time; mean effects were similar in all muscles except for the vastus medialis, which favored the G4S condition. Conversely, only a trivial and highly variable effect was observed between interventions for strength gain. Our results suggest different eccentric durations produce similar increases in hypertrophy of the vastus lateralis and rectus femoris; however, the vastus medialis showed greater growth from the slower eccentric duration. Eccentric duration did not differentially affect strength-related adaptations.
Collapse
|
8
|
A Systematic Review of the Effects of Different Resistance Training Volumes on Muscle Hypertrophy. J Hum Kinet 2022; 81:199-210. [PMID: 35291645 PMCID: PMC8884877 DOI: 10.2478/hukin-2022-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The main goal of this study was to compare responses to moderate and high training volumes aimed at inducing muscle hypertrophy. A literature search on 3 databases (Pubmed, Scopus and Chocrane Library) was conducted in January 2021. After analyzing 2083 resultant articles, studies were included if they met the following inclusion criteria: a) studies were randomized controlled trials (with the number of sets explicitly reported), b) interventions lasted at least six weeks, c) participants had a minimum of one year of resistance training experience, d) participants’ age ranged from 18 to 35 years, e) studies reported direct measurements of muscle thickness and/or the cross-sectional area, and f) studies were published in peer-review journals. Seven studies met the inclusion criteria and were included in the qualitative analysis, whereas just six were included in the quantitative analysis. All participants were divided into three groups: “low” (<12 weekly sets), “moderate” (12-20 weekly sets) and “high” volume (>20 weekly sets). According to the results of this meta-analysis, there were no differences between moderate and high training volume responses for the quadriceps (p = 0.19) and the biceps brachii (p = 0.59). However, it appears that a high training volume is better to induce muscle mass gains in the triceps brachii (p = 0.01). According to the results of this review, a range of 12-20 weekly sets per muscle group may be an optimum standard recommendation for increasing muscle hypertrophy in young, trained men.
Collapse
|
9
|
Acute impact of blood flow restriction on strength-endurance performance during the bench press exercise. Biol Sport 2021; 38:653-658. [PMID: 34937975 PMCID: PMC8670800 DOI: 10.5114/biolsport.2021.103726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
The main goal of the present study was to evaluate the acute effects of blood flow restriction (BFR) at 70% of full arterial occlusion pressure on strength-endurance performance during the bench press exercise. The study included 14 strength-trained male subjects (age = 25.6 ± 4.1 years; body mass = 81.7 ± 10.8 kg; bench press 1 repetition maximum (1RM) = 130.0 ± 22.1 kg), experienced in resistance training (3.9 ± 2.4 years). During the experimental sessions in a randomized crossover design, the subjects performed three sets of the bench press at 80% 1RM performed to failure with two different conditions: without BFR (CON); and with BFR (BFR). Friedman's test showed significant differences between BFR and CON conditions for the number of repetitions performed (p < 0.001); for peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The pairwise comparisons showed a significant decrease for peak bar velocity and mean bar velocity in individual Set 1 for BFR when compared to CON conditions (p = 0.01 for both). The two-way repeated measures ANOVA showed a significant main effect for the time under tension (p = 0.02). A post-hoc comparisons for the main effect showed a significant increase in time under tension for BFR when compared to CON (p = 0.02). The results of the presented study indicate that BFR used during strength-endurance exercise generally does not decrease the level of endurance performance, while it causes a drop in bar velocity.
Collapse
|
10
|
Jarosz J, Trybulski R, Krzysztofik M, Tsoukos A, Filip-Stachnik A, Zajac A, Bogdanis GC, Wilk M. The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Front Physiol 2021; 12:715096. [PMID: 34447318 PMCID: PMC8383203 DOI: 10.3389/fphys.2021.715096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The main aim of the present study was to evaluate the acute effects of ischemia used during rest periods on bar velocity changes during the bench press exercise at progressive loads, from 20 to 90% of 1RM. Ten healthy resistance trained men volunteered for the study (age = 26.3 ± 4.7 years; body mass = 89.8 ± 6.3 kg; bench press 1RM = 142.5 ± 16.9 kg; training experience = 7.8 ± 2.7 years). During the experimental sessions the subjects performed the bench press exercise under two different conditions, in a randomized and counterbalanced order: (a) ischemia condition, with ischemia applied before the first set and during every rest periods between sets, and (b) control condition where no ischemia was applied. During each experimental session eight sets of the bench press exercise were performed, against loads starting from 20 to 90% 1RM, increased progressively by 10% in each subsequent set. A 3-min rest interval between sets was used. For ischemia condition the cuffs was applied 3 min before the first set and during every rest period between sets. Ischemia was released during exercise. The cuff pressure was set to ∼80% of full arterial occlusion pressure. The two-way repeated measures ANOVA showed a statistically significant interaction effect for peak bar velocity (p = 0.04) and for mean bar velocity (p = 0.01). There was also a statistically significant main effect of condition for peak bar velocity (p < 0.01) but not for mean bar velocity (p = 0.25). The post hoc analysis for interaction showed significantly higher peak bar velocity for the ischemia condition compared to control at a load of 20% 1RM (p = 0.007) and at a load of 50% 1RM (p = 0.006). The results of the present study indicate that ischemia used before each set even for a brief duration of <3 min, has positive effects on peak bar velocity at light loads, but it is insufficient to induce such effect on higher loads.
Collapse
Affiliation(s)
- Jakub Jarosz
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Robert Trybulski
- Department of Medical Sciences, The Wojciech Korfanty School of Economics, Katowice, Poland.,Provita Zory Medical Center, Zory, Poland
| | - Michał Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Aleksandra Filip-Stachnik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
11
|
Wilk M, Krzysztofik M, Jarosz J, Krol P, Leznicka K, Zajac A, Stastny P, Bogdanis GC. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs. Front Physiol 2021; 12:626915. [PMID: 33716773 PMCID: PMC7947627 DOI: 10.3389/fphys.2021.626915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum -1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Jarosz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Pawel Krol
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszów, Rzeszów, Poland
| | - Katarzyna Leznicka
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Petr Stastny
- Faculty of Physical Education and Sport, Department of Sport Games, Charles University, Prague, Czechia
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Wilk M, Tufano JJ, Zajac A. The Influence of Movement Tempo on Acute Neuromuscular, Hormonal, and Mechanical Responses to Resistance Exercise-A Mini Review. J Strength Cond Res 2020; 34:2369-2383. [PMID: 32735429 DOI: 10.1519/jsc.0000000000003636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wilk, M, Tufano, JJ, and Zajac, A. The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise-a mini review. J Strength Cond Res 34(8): 2369-2383, 2020-Resistance training studies mainly analyze variables such as the type and order of exercise, intensity, number of sets, number of repetitions, and duration and frequency of rest periods. However, one variable that is often overlooked in resistance training research, as well as in practice, is premeditated movement tempo, which can influence a myriad of mechanical and physiological factors associated with training and adaptation. Specifically, this article provides an overview of the available scientific literature and describes how slower tempos negatively affect the 1-repetition maximum, the possible load to be used, and the number of repetitions performed with a given load, while also increasing the total time under tension, which can mediate acute cardiovascular and hormonal responses. As a result, coaches should consider testing maximal strength and the maximal number of repetitions that can be performed with each movement tempo that is to be used during training. Otherwise, programming resistance training using various movement tempos is more of a trial-and-error approach, rather than being evidence or practice based. Furthermore, practical applications are provided to show how movement tempo can be adjusted for a variety of case study-type scenarios.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland; and
| | - James J Tufano
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland; and
| |
Collapse
|
13
|
Effects of Short-Term Core Stability Training on Dynamic Balance and Trunk Muscle Endurance in Novice Olympic Weightlifters. J Hum Kinet 2020; 74:43-50. [PMID: 33312274 PMCID: PMC7706638 DOI: 10.2478/hukin-2020-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our primary objective was to investigate the effects of short-term core stability training on dynamic balance and trunk muscle endurance in novice weightlifters learning the technique of the Olympic lifts. Our secondary objective was to compare dynamic balance and trunk muscle endurance between novice and experienced weightlifters. Thirty novice (NOV) and five experienced (EXP) weightlifters participated in the study. Mediolateral (ML) and anteroposterior (AP) dynamic balance and trunk muscle endurance testing were performed a week before (Pre) and after (Post) a 4-week core stability training program. In the NOV group, there was an improvement of both dynamic balance (ML and AP, p = 0.0002) and trunk muscle endurance (p = 0.0002). In the EXP group, there was no significant difference between Pre and Post testing conditions, except an increase in muscle endurance in the right-side plank (p = 0.0486). Analysis of the results showed that experienced lifters were characterized by more effective dynamic balance and greater core muscle endurance than their novice peers, not only before the training program but after its completion as well. In conclusion, the applied short-term core stability training improved dynamic balance and trunk muscle endurance in novice weightlifters learning the Olympic lifts. Such an exercise program can be incorporated into a training regime of novice weightlifters to prepare them for technically difficult tasks of the Olympic snatch and clean and jerk.
Collapse
|
14
|
Krzysztofik M, Zajac A, Żmijewski P, Wilk M. Can the Cambered Bar Enhance Acute Performance in the Bench Press Exercise? Front Physiol 2020; 11:577400. [PMID: 33192580 PMCID: PMC7606977 DOI: 10.3389/fphys.2020.577400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
The main goal of this study was to assess the impact of the cambered bar (CB) during the bench press exercise on power output and bar velocity when compared to a standard bar (SB). Ten healthy strength-trained men (age = 27.9 ± 3.7 years; body mass = 90.1 ± 12.5 kg; resistance training experience = 6.5 ± 2.7 years; bench press one-repetition maximum (1RM) = 118.5 ± 21 kg) performed a single set of 3 repetitions of the bench press exercise with an SB and a CB at 50%1RM to assess differences in peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV), range of motion (ROM), and positive work time under load (TUL) between conditions. The t-test indicated significantly higher mean ROM for the cambered bar in comparison to the standard bar (52.7 vs. 44.9 cm; P < 0.01; ES = 1.40). Further, there was a significantly higher PP (907 vs. 817 W; P < 0.01; ES = 0.35), MP (556 vs. 496 W; P < 0.01; ES = 0.46), PV (1.24 vs. 1.14 m/s; P < 0.01; ES = 0.35) and MV (0.89 vs. 0.82 m/s; P < 0.01; ES = 0.34) for the CB condition when compared to the SB. A significantly longer TUL for the CB was observed, when compared to the SB (1.89 vs. 1.51 s; P < 0.01; ES = 1.38). The results of this study showed that the CB significantly increased power output and bar velocity in the bench press exercise at 50%1RM compared to the SB. Therefore, the additional ROM, made possible through the use of the CB, allows for the acceleration of the bar through a significantly longer displacement, which has a positive impact on power output. However, a simultaneous increase in TUL may cause higher fatigue when the bench press is performed with the CB compared to the SB.
Collapse
Affiliation(s)
- Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Piotr Żmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Does Acute Blood Flow Restriction with Pneumatic and Non-Pneumatic Non-Elastic Cuffs Promote Similar Responses in Blood Lactate, Growth Hormone, and Peptide Hormone? J Hum Kinet 2020; 74:85-97. [PMID: 33312278 PMCID: PMC7706653 DOI: 10.2478/hukin-2020-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Blood flow restriction (BFR) can be used during resistance training (RT) through pressure application with pneumatic (pressurized) cuffs (PC) or non-pneumatic (practical) cuffs (NPC). However, PC are expensive and difficult to use in the gym environment compared to NPC. The main aim was to compare, correlate, and verify the hormonal and metabolic responses between PC and NPC during a low-load BFR during RT of the upper-body. The secondary aim was to compare blood lactate (BLa) concentration between pre- and post-exercise (2-min into recovery), as well as growth hormone (GH) and insulin-like growth factor 1 (IGF-1) concentration before, 10-min, and 15-min post exercise. Sixteen trained men randomly and alternately completed two experimental RT protocols of the upper-body : A) RT with BFR at 20% 1RM using PC (RT-BFR-PC) and (B) RT with BFR at 20% 1RM using NPC (RT-BFR-NPC) in the bench press, wide-grip lat pulldown, shoulder press, triceps pushdown, and biceps curl exercises. There was no significant difference in BLa 2-min post exercise (p=0.524), GH 10-min (p=0.843) and 15-min post exercise (p=0.672), and IGF-1 10-min (p=0.298) and 15-min post exercise (p=0.201) between RT-BFR-PC and RT-BFR-NPC. In addition, there was a moderate correlation, satisfactory ICCs, and agreement between both protocols in metabolic and hormonal responses. The experimental sessions promoted significant increases in GH and BLa, but not in IGF-1 (p<0.05). The absence of a significant difference between RT-BFR-PC and RT-BFR-NPC in metabolic and hormonal responses highlight the applicability of NPC as a low-cost and easy-to-use tool for BFR upper-body RT.
Collapse
|
16
|
Abstract
Muscle stiffness, muscle elasticity and explosive strength are the main components of athletes' performance and they show a sex-based as well as ethnicity variation. Muscle stiffness is thought to be one of the risk factors associated with sports injuries and is less common in females than in males. These observations may be explained by circulating levels of sex hormones and their specific receptors. It has been shown that higher levels of estrogen are associated with lower muscle stiffness responsible for suppression of collagen synthesis. It is thought that these properties, at least in part, depend on genetic factors. Particularly, the gene encoding estrogen receptor 1 (ESR1) is one of the candidates that may be associated with muscle stiffness. Muscle elasticity increases with aging and there is evidence suggesting that titin (encoded by the TTN gene), a protein that is expressed in cardiac and skeletal muscles, is one of the factors responsible for elastic properties of the muscles. Mutations in the TTN gene result in some types of muscular dystrophy or cardiomyopathy. In this context, TTN may be regarded as a promising candidate for studying the elastic properties of muscles in athletes. The physiological background of explosive strength depends not only on the muscle architecture and muscle fiber composition, but also on the central nervous system and functionality of neuromuscular units. These properties are, at least partly, genetically determined. In this context, the ACTN3 gene code for α-actinin 3 has been widely researched.
Collapse
|
17
|
Sabido R, Hernández-Davó JL, García-Valverde A, Marco P, Asencio P. Influence of the Strap Rewind Height During a Conical Pulley Exercise. J Hum Kinet 2020; 74:109-118. [PMID: 33312280 PMCID: PMC7706643 DOI: 10.2478/hukin-2020-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of flywheel devices has increased in popularity within resistance training programs. However, little is known about modifiable variables which may affect power output responses, as the rope length and the height level used in a conical pulley device. The aim of this study was to assess the influence of using three different rope lengths (1.5, 2.5 and 3.5 meters) and four different height levels (L1, L2, L3 and L4) on concentric peak power (PPconc), eccentric peak power (PPecc) and eccentric overload (eccentric/concentric PP ratio; EO) during conical pulley exercises (i.e. seated and stand-up row). A total of 29 recreationally trained subjects (25.3±7.1 years; 1.74±0.06 m; 72.5±8.3 kg) took part in the study. Testing sessions consisted of 1 set of 10 repetitions under each condition; experiment 1: seated row exercise using the three different rope lengths; experiment 2: stand-up row exercise using four different height levels of the conical pulley. Results from experiment 1 did not show differences between rope lengths, although a trend for greater PPecc (ES=0.36-0.38) and EO (ES=0.40-0.41) was found when using longer rope lengths (2.5 and 3.5). Experiment 2 showed significant increases in both PPconc and PPecc as the height level used was closer to the cone base (L4). In contrast, EO values were significantly greater when using upper height levels (L1). These results suggest that the height level used during conical pulley exercises highly influences power output responses. Therefore, this variable should be carefully managed depending on the training goal (e.g. power vs hypertrophy).
Collapse
Affiliation(s)
- Rafael Sabido
- Department of Sport Sciences, Sport Research Center, Miguel Hernández University, Elche, Spain
| | | | | | - Pablo Marco
- Department of Sport Sciences, Sport Research Center, Miguel Hernández University, Elche, Spain
| | - Pablo Asencio
- Department of Sport Sciences, Sport Research Center, Miguel Hernández University, Elche, Spain
| |
Collapse
|
18
|
Pedrosa GF, Machado SC, Diniz RCR, de Lacerda LT, Martins-Costa HC, de Andrade AGP, Bemben M, Chagas MH, Lima FV. The Effects of Altering the Concentric/Eccentric Phase Times on EMG Response, Lactate Accumulation and Work Completed When Training to Failure. J Hum Kinet 2020; 73:33-44. [PMID: 32774535 PMCID: PMC7386151 DOI: 10.2478/hukin-2019-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study compared the electromyographic response, the blood lactate concentration (BLC), and the maximum number of repetitions (MNR) between protocols of different concentric/eccentric duration taken to muscle failure. This comparison may help to understand how different concentric/eccentric duration may influence performance and the central and metabolic responses in trained men. Seventeen strength-trained men performed two protocols in a counterbalanced design. Three sets of the Smith bench press exercise were performed to failure at 60% of the one-repetition maximum (1RM) using each protocol (4-s concentric/2-s eccentric [4 s: 2 s]; and 2-s concentric/4-s eccentric [2 s: 4 s]). The normalized root mean square (EMGRMS) and the mean frequency (EMGMF) of the electromyographic signals for the pectoralis major and the triceps brachii were compared in the first, middle, and last repetitions. The BLC was assessed at rest, during and after the test sessions. To compare the EMG and BLC, a 3-way ANOVA with repeated measures with a post hoc Tukey's test was used. To compare the MNR performed across the sets, an ANOVA-type rank test with the Dunn's post hoc test was used. The ANOVA indicated a greater EMGRMS for Protocol 4 s: 2 s in the pectoralis major and a lower EMGMF for Protocol 4 s: 2 s in the triceps brachii at the middle and last repetitions. Both protocols increased the EMGRMS and decreased the EMGMF across repetitions. Despite the results show different levels of activation and neuromuscular fatigue between protocols, the BLC and the MNR were similar.
Collapse
Affiliation(s)
- Gustavo Ferreira Pedrosa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
- Centro de Instrução e Adaptação da Aeronáutica, Lagoa Santa, Brazil
| | - Sandra Carvalho Machado
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo César Ribeiro Diniz
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Túlio de Lacerda
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physical Education and Sports, Technological Education Federal Center of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Movement Analysis and Human Performance, Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| | - Hugo Cesar Martins-Costa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Movement Analysis and Human Performance, Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| | - André Gustavo Pereira de Andrade
- Biomechanical Laboratory of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Michael Bemben
- Department of Health and Exercise Science. University of Oklahoma, Norman, United States
| | - Mauro Heleno Chagas
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Vitor Lima
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy of the Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Krzysztofik M, Wilk M, Filip A, Zmijewski P, Zajac A, Tufano JJ. Can Post-Activation Performance Enhancement (PAPE) Improve Resistance Training Volume during the Bench Press Exercise? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2554. [PMID: 32276452 PMCID: PMC7177703 DOI: 10.3390/ijerph17072554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) on resistance training volume during the bench press exercise (BP). The study included 12 healthy strength-trained males (age 25.2 ± 2.1 years, body mass 92.1 ± 8.7 kg, BP one-repetition maximum (1RM) 28.8 ± 10.5 kg, training experience 6.3 ± 2.1 years). Methods: The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols with a conditioning activity (CA) consisting of the BP with three sets of three repetitions at 85% 1RM (PAPE), and a control without the CA (CONT). To assess the differences between PAPE and CONT, the participants performed three sets of the BP to volitional failure at 60% 1RM. The differences in the number of performed repetitions (REP), time under tension (TUT), peak power output (PP), mean of peak power output (PPMEAN), mean power output (MP), peak bar velocity (PV), mean of peak bar velocity (PVMEAN), and mean bar velocity (MV) between the CONT and PAPE conditions were examined using repeated measures ANOVA. Results: The post-hoc analysis for the main condition effect indicated significant increases in TUT (p < 0.01) for the BP following PAPE, compared to the CONT condition. Furthermore, there was a significant increase in TUT (p < 0.01) in the third set for PAPE compared to the CONT condition. No statistically significant main effect was revealed for REP, PP, PV, PPMEAN, PVMEAN, MP, and MV. Conclusion: The main finding of the study was that the PAPE protocol increased training volume based on TUT, without changes in the number of preformed REP.
Collapse
Affiliation(s)
- Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Warsaw, Poland;
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - James J. Tufano
- Faculty of Physical Education and Sport, Charles University, 16000 Prague, Czech Republic;
| |
Collapse
|
20
|
Wilk M, Golas A, Zmijewski P, Krzysztofik M, Filip A, Coso JD, Tufano JJ. The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results. J Hum Kinet 2020; 72:151-159. [PMID: 32269656 PMCID: PMC7126254 DOI: 10.2478/hukin-2020-0001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different tempos of movement can be used during resistance training, but programming them is often a trial-and-error practice, as changing the speed at which the exercise is performed does not always correspond with the tempo at which the 1-repetition-maximum occurred. Therefore, the aim of this study was to determine the effect of different movement tempos during the bench press (BP) exercise on the one-repetition maximum (1RM) load. Ninety men (age = 25.8 ± 5.3 years, body mass = 80.2 ± 14.9 kg), with a minimum one year of resistance training experience took part in the study. Using a randomized crossover design, each participant completed the BP 1RM test with five different movement tempos: V/0/V/0, 2/0/V/0, 5/0/V/0, 8/0/V/0 and 10/0/V/0. Repeated measures ANOVA compared the differences between the 1RM at each tempo. The 1RM load was significantly greater during V/0/V/0 and 2/0/V/0 compared to 5/0/V/0, 8/0/V/0, and 10/0/V/0 (p < 0.01). Furthermore, the 1RM load was significantly greater during 5/0/V/0 compared to 8/0/V/0 and 10/0/V/0 (p < 0.01), but there were no differences between either V/0/V/0 and 2/0/V/0 (p = 0.92) or between 8/0/V/0 and 10/0/V/0 (p = 0.08). Therefore, different movement tempos used during training should be accompanied by their own tempo-specific 1RM testing, as slower eccentric phases significantly decrease maximal concentric performance. Furthermore, 1RM test procedures should include information about the movement tempo used during the test protocol. In addition, the standardization of the tempo should be taken into account in investigations that use the 1 RM test to assess the effects of any treatment on maximal muscle strength.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Artur Golas
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | - James J. Tufano
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|