1
|
Rahimi MR, Faraji H, Hajipoor SR, Ahmetov II. Effect of MCT1 A1470T Polymorphism on Lactate and Potassium Concentrations After Caffeine Ingestion During Acute Resistance Exercise. Nutrients 2024; 16:4396. [PMID: 39771017 PMCID: PMC11676378 DOI: 10.3390/nu16244396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The monocarboxylate transporter 1 (MCT1) plays a crucial role in regulating lactate and pyruvate transport across cell membranes, which is essential for energy metabolism during exercise. The MCT1 A1470T (rs1049434) polymorphism has been suggested to influence lactate transport, with the T (major) allele associated with greater transport efficiency. This study aimed to investigate the effect of the MCT1 polymorphism on lactate and potassium (K+) concentrations in response to resistance exercise (RE) following caffeine (CAF) ingestion. METHODS Thirty resistance-trained athletes were randomly selected to participate in a randomized, double-blind, placebo-controlled crossover study. Participants consumed either CAF (6 mg/kg of body weight) or a placebo (PL; 6 mg of maltodextrin per kg of body weight) one hour before performing RE. Serum lactate and potassium concentrations were measured before exercise (Pre), immediately after (Post), and 15 min post-exercise (15 min Post). The RE protocol consisted of three sets to failure at 85% of 1RM for each exercise, with 2 min rest intervals between sets. RESULTS The findings indicate that under caffeine consumption, individuals carrying the A (minor) allele had significantly higher blood lactate levels before (p = 0.037) and immediately after (p = 0.0001) resistance exercise compared to those with the TT genotype. Additionally, caffeine consumption moderated the increase in plasma potassium levels in TT genotype carriers, while A allele carriers exhibited elevated potassium levels 15 min post-exercise, regardless of caffeine or placebo intake (p < 0.05). CONCLUSIONS Our findings suggest that the MCT1 A1470T polymorphism may influence lactate metabolism and clearance under caffeine consumption, potentially impacting exercise performance and recovery.
Collapse
Affiliation(s)
| | - Hassan Faraji
- Department of Physical Education and Sports Science, Marivan Branch, Islamic Azad University, Marivan 14778-93855, Iran
| | | | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
2
|
Seki S, Kobayashi T, Beppu K, Nojo M, Hoshina K, Kikuchi N, Okamoto T, Nakazato K, Hwang I. Association Among MCT1 rs1049434 Polymorphism, Athlete Status, and Physiological Parameters in Japanese Long-Distance Runners. Genes (Basel) 2024; 15:1627. [PMID: 39766893 PMCID: PMC11675177 DOI: 10.3390/genes15121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Monocarboxylate transporters (MCTs) comprise 14 known isoforms, with MCT1 being particularly important for lactate transport. Variations in lactate metabolism capacity and aerobic performance are associated with the T1470A polymorphism in MCT1. We aimed to investigate the frequency of the T1470A polymorphism and compare relevant physiological parameters among long-distance runners, wherein these parameters are fundamental to athletic performance. METHODS We included 158 Japanese long-distance runners (LD) and 649 individuals from the general Japanese population (CON). The frequency of the T1470A polymorphism was compared between these groups and across athletic levels using the chi-square test. Additionally, physiological data were collected from 57 long-distance runners, and respiratory gas measurements were obtained using the mixing-chamber method during a graded incremental exercise test. RESULTS We observed a significant difference between the LD and CON groups in the dominant model and between the sub-28 min group and 28 min or above group in the recessive model. As the competitive level increased, the frequency of the AA genotype also increased. When comparing physiological parameters between the AA genotype and T allele, subjects with the AA genotype showed significantly higher values for oxygen uptake at lactate threshold (p = 0.001), oxygen uptake at onset of blood lactate accumulation (p = 0.01), maximal oxygen uptake (p = 0.005), and maximal blood lactate concentration (p = 0.038). CONCLUSIONS These results suggest that the AA genotype of the T1470A polymorphism of MCT1 is an effective genotype associated with athletic status and aerobic capacity in Japanese long-distance runners.
Collapse
Affiliation(s)
- Shotaro Seki
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Tetsuro Kobayashi
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Kenji Beppu
- LOGISTEED Track & Field Club House, LOGISTEED, Ltd., Hachigasakimidori-cho, Matsudo-shi 270-0024, Japan; (K.B.); (M.N.)
| | - Manabu Nojo
- LOGISTEED Track & Field Club House, LOGISTEED, Ltd., Hachigasakimidori-cho, Matsudo-shi 270-0024, Japan; (K.B.); (M.N.)
| | - Kosaku Hoshina
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa 252-0882, Japan;
| | - Naoki Kikuchi
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Takanobu Okamoto
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, 1221-1, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan;
| | - Inkwan Hwang
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku 158-8508, Japan; (T.K.); (N.K.); (T.O.); (I.H.)
| |
Collapse
|
3
|
Ferreira CP, Silvino VO, Trevisano RG, de Moura RC, Almeida SS, Pereira Dos Santos MA. Influence of genetic polymorphism on sports talent performance versus non-athletes: a systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2024; 16:223. [PMID: 39482721 PMCID: PMC11529235 DOI: 10.1186/s13102-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Talented athletes exhibit remarkable skills and performance in their respective sports, setting them apart from their peers. It has been observed that genetic polymorphisms can influence variations in sports performance, leading to numerous studies aimed at validating genetic markers for identifying sports talents. This study aims to evaluate the potential contribution of genetic factors associated with athletic performance predisposition in identifying sports talents. METHODS A systematic review was conducted following the PRISMA framework, utilizing the PICO methodology to develop the research question. The search was limited to case-control studies published between 2003 and June 2024, and databases such as Medline, LILACS, WPRIM, IBECS, CUMED, VETINDEX, Web of Science, Science Direct, Scopus and Scielo were utilized. The STREGA tool was employed to assess the quality of the selected studies. RESULTS A total of 1,132 articles were initially identified, of which 119 studies were included in the review. Within these studies, 50 genes and 94 polymorphisms were identified, showing associations with sports talent characteristics such as endurance, strength, power, and speed. The most frequently mentioned genes were ACTN3 (27.0%) and ACE (11.3%). CONCLUSION The ACE I/D and ACTN3 R577X polymorphisms are frequently discussed in the literature. Although athletic performance may be influenced by different genetic polymorphisms, limitations exist in associating them with athletic performance across certain genotypes and phenotypes. Future research is suggested to investigate the influence of polymorphisms in elite athletes from diverse backgrounds and sports disciplines.
Collapse
Affiliation(s)
- Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil.
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil.
| | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| | - Rebeca Gonçalves Trevisano
- Department of Obstetrician, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rayane Carvalho de Moura
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Anhanguera College of Guarulhos, Guarulhos, SP, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| |
Collapse
|
4
|
Mei T, Li X, Li Y, Yang X, Li L, He Z. Genetic markers and predictive model for individual differences in countermovement jump enhancement after resistance training. Biol Sport 2024; 41:119-130. [PMID: 39416505 PMCID: PMC11475001 DOI: 10.5114/biolsport.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 10/19/2024] Open
Abstract
This study aims to utilize Genome-Wide Association Analysis (GWAS) to identify genetic markers associated with enhanced power resulting from resistance training. Additionally, we analyze the potential biological effects of these markers and establish a predictive model for training outcomes. 193 Han Chinese adults (age: 20 ± 1 years) underwent resistance training involving squats and bench presses at 70% 1RM, twice weekly, 5 sets × 10 repetitions, for 12 weeks. Whole-genome genotyping was conducted, and participants' countermovement jump (CMJ) height, lower limb muscle strength, and body muscle mass were assessed. CMJ height change was used to assess changes in power and subjected to Genome-Wide Association Analysis (GWAS) against genotypes. Employing Polygenic Score (PGS) calculations and stepwise linear regression, a predictive model for training effects was constructed. The results revealed a significant increase in CMJ height among participants following the resistance training intervention (Δ% = 16.53%, p < 0.01), with individual differences ranging from -35.90% to 125.71%. 38 lead SNPs, including PCTP rs9907859 (p < 1 × 10-8), showed significant associations with the percentage change in CMJ height after training (p < 1 × 10-5). The explanatory power of the predictive model for training outcomes, established using PGS and phenotypic indicators, was 62.6%, comprising 13.0% from PGS and 49.6% from phenotypic indicators. SNPs associated with power resistance training were found to participate in the biological processes of musculoskeletal movement and the Striated muscle contraction pathway. These findings indicate that individual differences in the training effect of CMJ exist after resistance training, partially explained by genetic markers and phenotypic indicators (62.6%).
Collapse
Affiliation(s)
- Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaoxia Li
- Department of Teaching Affairs, Shandong Sport University, Jinan, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Liang Li
- Sultan Idris Education University, Tanjung Malin, Malaysia
| | - Zihong He
- Biological Science Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
İpekoğlu G, Apaydın N, Çetin T, Eren AN, Topçu P, Yücelsoy B, Civelek G, Sakar M. Examining the relationship between genetic polymorphisms (BDKRB2, GNB3, HIF1A, MCT1, NOS3) and endurance athlete status. Eur J Appl Physiol 2024; 124:1943-1958. [PMID: 38753016 PMCID: PMC11199302 DOI: 10.1007/s00421-024-05498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/05/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.
Collapse
Affiliation(s)
| | | | - Tuğba Çetin
- School of Physical Education and Sports, Karabuk University, Karabuk, Turkey.
| | | | - Pelinsu Topçu
- Faculty of Sport Science, Ordu University, Ordu, Turkey
| | | | | | - Mert Sakar
- Faculty of Sport Science, Ordu University, Ordu, Turkey
| |
Collapse
|
6
|
Massidda M, Flore L, Cugia P, Piras F, Scorcu M, Kikuchi N, Cięszczyk P, Maciejewska-Skrendo A, Tocco F, Calò CM. Association Between Total Genotype Score and Muscle Injuries in Top-Level Football Players: a Pilot Study. SPORTS MEDICINE - OPEN 2024; 10:22. [PMID: 38448778 PMCID: PMC10917720 DOI: 10.1186/s40798-024-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Recently, genetic predisposition to injury has become a popular area of research and the association between a few single nucleotide polymorphisms (SNPs) and the susceptibility to develop musculoskeletal injuries has been shown. This pilot study aimed to investigate the combined effect of common gene polymorphisms previously associated with muscle injuries in Italian soccer players. RESULTS A total of 64 Italian male top football players (age 23.1 ± 5.5 years; stature 180.2 ± 7.4 cm; weight 73.0 ± 7.9 kg) were genotyped for four gene polymorphisms [ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739), COL5A1 C > T (rs2722) and MCT1 c.1470A > T (rs1049434)]. Muscle injuries were gathered for 10 years (2009-2019). Buccal swabs were used to obtain genomic DNA, and the PCR method was used to genotype the samples. The combined influence of the four polymorphisms studied was calculated using a total genotype score (TGS: from 0 to 100 arbitrary units; a.u.). A genotype score (GS) of 2 was assigned to the "protective" genotype for injuries, a GS of 1 was assigned to the heterozygous genotype while a GS of 0 was assigned to the "worst" genotype. The distribution of genotype frequencies in the ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739) and MCT1 c.1470A > T (rs1049434) polymorphisms was different between non-injured and injured football players (p = 0.001; p = 0.016 and p = 0.005, respectively). The incidence of muscle injuries was significantly different among the ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739) and COL5A1 C > T (rs2722) genotype groups, showing a lower incidence of injuries in the "protective" genotype than "worse" genotype (ACE, p < 0.001; ACTN3, p = 0.005) or intermediate genotype (COL5A1, p = 0.029). The mean TGS in non-injured football players (63.7 ± 13.0 a.u.) was different from that of injured football players (42.5 ± 12.5 a.u., p < 0.001). There was a TGS cut-off point (56.2 a.u.) to discriminate non-injured from injured football players. Players with a TGS beyond this cut-off had an odds ratio of 3.5 (95%CI 1.8-6.8; p < 0.001) to suffer an injury when compared with players with lower TGS. CONCLUSIONS These preliminary data suggest that carrying a high number of "protective" gene variants could influence an individual's susceptibility to developing muscle injuries in football. Adapting the training load parameters to the athletes' genetic profile represents today the new frontier of the methodology of training.
Collapse
Affiliation(s)
- Myosotis Massidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
- Italian Federation of Sports Medicine, Rome, Italy.
| | - Laura Flore
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Cugia
- Italian Federation of Sports Medicine, Rome, Italy
- Cagliari Calcio SpA, Cagliari, Italy
| | - Francesco Piras
- Italian Federation of Sports Medicine, Rome, Italy
- Cagliari Calcio SpA, Cagliari, Italy
| | - Marco Scorcu
- Italian Federation of Sports Medicine, Rome, Italy
- Cagliari Calcio SpA, Cagliari, Italy
| | - Naoki Kikuchi
- Nippon Sport Science University (NSSU), Tokyo, Japan
| | - Pawel Cięszczyk
- Department of Physical Education, University of Physical Education and Sport, Gdańsk, Poland
| | - Agnieszka Maciejewska-Skrendo
- Department of Physical Education, University of Physical Education and Sport, Gdańsk, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 71-065, Szczecin, Poland
| | - Filippo Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Italian Federation of Sports Medicine, Rome, Italy
| | - Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Ginszt M, Saito M, Zięba E, Majcher P, Kikuchi N. Body Composition, Anthropometric Parameters, and Strength-Endurance Characteristics of Sport Climbers: A Systematic Review. J Strength Cond Res 2023; 37:1339-1348. [PMID: 36930882 DOI: 10.1519/jsc.0000000000004464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
ABSTRACT Ginszt, M, Saito, M, Zięba, E, Majcher, P, and Kikuchi, N. Body composition, anthropometric parameters, and strength-endurance characteristics of sport climbers: a systematic review. J Strength Cond Res XX(X): 000-000, 2023-Sport climbing was selected to be part of the Summer Olympic Games in Tokyo 2021 with 3 subdisciplines: lead climbing, speed climbing, and bouldering. The nature of physical effort while speed climbing, lead climbing, and bouldering performance is different. This literature review aimed to describe differences between body composition, anthropometric parameters, and upper-limb strength-endurance variables between sport climbers with different ability levels and nonclimbers. The following databases were searched: PubMed and Scopus. The following keywords were used: "sport climbing," "rock climbing," "lead climbing," and "bouldering." Articles were considered from January 2000 to October 2021 if they concerned at least one of the following parameters: body composition (mass, body mass index, body fat, lean muscle mass, bone mineral density), anthropometric parameters (height, ape index), muscle strength (MVC finger strength in half-crimp grip, MVC finger strength to body mass, handgrip strength), and muscle endurance (force time integral, pull-ups). A review shows that body mass and body fat content were lower in the sport climbers compared with controls and in elite sport climbers compared with those less advanced. Sport climbers presented higher values of MVC finger strength in half-crimp grip, MVC finger strength to body mass, handgrip strength, and force time integral parameter than control subjects. Significantly higher MVC values in half-crimp grip were observed in elite sport climbers than in advanced athletes. None of the analyzed work showed differences between sport climber groups in the ape index. The abovementioned parameters may be a key factor in elite sport climbing performance.
Collapse
Affiliation(s)
- Michał Ginszt
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland; and
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Estera Zięba
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland; and
| | - Piotr Majcher
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland; and
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
8
|
Transmission Distortion of MCT1 rs1049434 among Polish Elite Athletes. Genes (Basel) 2022; 13:genes13050870. [PMID: 35627255 PMCID: PMC9142056 DOI: 10.3390/genes13050870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Background: To date, nearly 300 genetic markers were linked to endurance and power/strength traits. The current study aimed to compare genotype distributions and allele frequencies of the common polymorphisms: MCT1 rs1049434, NRF2 rs12594956, MYBPC3 rs1052373 and HFE rs1799945 in Polish elite athletes versus nonathletes. Methods: The study involved 101 male elite Polish athletes and 41 healthy individuals from the Polish population as a control group. SNP data were extracted from whole-genome sequencing (WGS) performed using the following parameters: paired reads of 150 bps, at least 90 Gb of data per sample with 300 M reads and 30× mean coverage. Results: All the analyzed polymorphisms conformed to Hardy–Weinberg equilibrium (HWE) in athletes and the control group, except the MCT1 rs1049434, where allele T was over-represented in the elite trainers’ group. No significant between-group differences were found for analyzed polymorphisms. Conclusions: The MCT1 rs1049434 transmission distortion might be characteristic of Polish athletes and the effect of strict inclusion criteria. This result and the lack of statistically significant changes in the frequency of other polymorphisms between the groups might result from the small group size.
Collapse
|
9
|
Massidda M, Flore L, Kikuchi N, Scorcu M, Piras F, Cugia P, Cięszczyk P, Tocco F, Calò CM. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: a pilot study. Eur J Appl Physiol 2021; 121:3399-3408. [PMID: 34480633 DOI: 10.1007/s00421-021-04797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study is to investigate the influence of the MCT1 T1470A polymorphism (rs1049434) on repeated sprint ability (RSA) and lactate accumulation after RSA testing. METHODS Twenty-six elite Italian male football players (age: 17.7 ± 0.78 years; height: 179.2 ± 7.40 cm; weight: 72.1 ± 5.38 kg) performed RSA testing (6 × 30-m sprints with an active recovery between sprints), and lactate measurements were obtained at 1, 3, 5, 7, and 10 min post-exercise. Genotyping for the MCT1 T1470A polymorphism was performed using PCR. RESULTS Genotype distributions were in Hardy-Weinberg equilibrium, being 42% wildtype (A/A), 46% heterozygotes (T/A), and 12% mutated homozygotes (T/T). Significant differences between genotypic groups were found in the two final sprint times of the RSA test. Under a dominant model, carriers of the major A-allele (Glu-490) in the dominant model showed a significantly lower sprint time compared to footballers with the T/T (Asp/Asp) genotype (5th Sprint time: A/A + T/A = 4.60 s vs TT = 4.97 s, 95% CI 0.07-0.67, p = 0.022; 6th Sprint: A/A + T/A = 4.56 s vs T/T = 4.87 s, 95% CI 0.05-0.57, p = 0.033). CONCLUSIONS The T1470A (Glu490Asp) polymorphism of MCT1 was associated with RSA. Our findings suggest that the presence of the major A-allele (Glu-490) is favourable for RSA in football players.
Collapse
Affiliation(s)
- M Massidda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy.
- Faculty of Medicine and Surgery, Sport and Exercise Science Degree Courses, University of Cagliari, Cagliari, Italy.
| | - L Flore
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - N Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - M Scorcu
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - F Piras
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - P Cugia
- Italian Federation of Sports Medicine Federation (FMSI), Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - P Cięszczyk
- Department of Physical Education, University of Physical Education and Sport, Gdańsk, Poland
| | - F Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - C M Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|