1
|
Marshall CL, Hasani K, Mookherjee N. Immunobiology of Steroid-Unresponsive Severe Asthma. FRONTIERS IN ALLERGY 2022; 2:718267. [PMID: 35387021 PMCID: PMC8974815 DOI: 10.3389/falgy.2021.718267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by airflow obstruction, bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma patients suffer from uncontrolled severe asthma (SA). A major difference between patients with SA from those with mild-to-moderate asthma is the resistance to common glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark of SA. An impediment in the development of new therapies for SA is a limited understanding of the range of immune responses and molecular networks that can contribute to the disease process. Typically SA is thought to be characterized by a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate that the immunophenotype of SA is diverse. This review attempts to summarize the interplay of different immune mediators and related mechanisms that are associated with airway inflammation and the immunobiology of SA.
Collapse
Affiliation(s)
- Courtney Lynn Marshall
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kosovare Hasani
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Exhaled breath condensates from healthy children induce cell death of in vitro cultured cells by activation of apoptosis. Postepy Dermatol Alergol 2021; 38:85-90. [PMID: 34408572 PMCID: PMC8362770 DOI: 10.5114/ada.2019.87087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Exhaled breath condensate (EBC) is a liquefied air, containing a mixture of non-volatile compounds, reflecting pathophysiological status of the bronchopulmonary system. Therefore, EBC analysis may be useful in diagnostics and monitoring of various respiratory diseases. In previous studies it was found that EBC from asthmatic children contained several regulators of angiogenesis. In vitro experiments with EBCs from children with asthma revealed their weak influence on proliferation of various cells. Surprisingly, EBCs from healthy children led to apoptosis of all tested cells. Aim To assess the expression of selected apoptosis-related proteins in human and murine cells exposed to EBC from healthy children. Material and methods EBCs from healthy children were added to cultures of murine endothelial cells (C166) or human lung fibroblasts (HLF) to induce their apoptosis. For proteome analysis the apoptosis pathway-specific protein microarrays were used. Results The homogenates from EBC-treated C166 cells contained low amounts of Hsp27, which correlated with their fast death. Contrary to C166, the lysates from EBC-treated fibroblasts displayed increased amounts of Hsp27, which correlated with delayed HLF response to the induction of apoptosis. Except for increased caspase-3 in EBC-treated HLF, none of the other apoptosis regulators revealed any significant changes in that analysis. Conclusions The screening of apoptosis pathways with microarray technology allowed identification of two molecules, Hsp27 and caspase-3, involved in cellular response to EBC. However, the factor responsible for induction of the cytotoxic effect of EBC from healthy children still remains unknown.
Collapse
|
3
|
Połomska J, Bar K, Sozańska B. Exhaled Breath Condensate-A Non-Invasive Approach for Diagnostic Methods in Asthma. J Clin Med 2021; 10:jcm10122697. [PMID: 34207327 PMCID: PMC8235112 DOI: 10.3390/jcm10122697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of asthma has been intensively studied, but its underlying mechanisms such as airway inflammation, control of airway tone, and bronchial reactivity are still not completely explained. There is an urgent need to implement novel, non-invasive diagnostic tools that can help to investigate local airway inflammation and connect the molecular pathways with the broad spectrum of clinical manifestations of asthma. The new biomarkers of different asthma endotypes could be used to confirm diagnosis, predict asthma exacerbations, or evaluate treatment response. In this paper, we briefly describe the characteristics of exhaled breath condensate (EBC) that is considered to be an interesting source of biomarkers of lung disorders. We look at the composition of EBC, some aspects of the collection procedure, the proposed biomarkers for asthma, and its clinical implications. We also indicate the limitations of the method and potential strategies to standardize the procedure of EBC collection and analytical methods.
Collapse
|
4
|
Influence of exhaled breath condensates from children with asthma on endothelial cells cultured in vitro. Do we really know everything about our breath condensate? Postepy Dermatol Alergol 2019; 37:368-374. [PMID: 33603596 PMCID: PMC7874863 DOI: 10.5114/ada.2019.86181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Asthma-associated remodelling involves subepithelial fibrosis and increased vascularization of the bronchial wall. The latter may be associated with excessive production of several angiogenesis regulators which may be found in exhaled breath condensates (EBCs) collected from children with asthma. Aim To assess the influence of EBC samples of asthmatic children and healthy controls on in vitro cultures of normal human lung microvascular endothelial cells (HLMVEC) and murine endothelial cell line (C-166). Moreover, the proteomic profile of cytokines in EBC samples was analysed. Material and methods Breath condensates collected from children with mild asthma (n = 10) and from healthy controls (n = 10) were used for experiments. Colorimetric tetrazolium salt reduction assay was used to evaluate the effect of EBCs on HLMVEC and C-166 cell lines. Furthermore, influence of EBCs on C-166 cell line was assessed using Annexin V-binding assay. The cytokine screening of EBC samples was performed using a proteome microarray system. Results The EBCs from patients with asthma revealed a weak inhibitory influence on human and murine endothelial cells. Surprisingly, EBCs from healthy children led to cell death, mainly by the induction of apoptosis. There were no statistically significant differences in the cytokine profile between EBC samples from children with asthma and healthy controls. Conclusions Our preliminary report shows for the first time that the incubation of EBCs from healthy controls induced apoptosis in endothelial cells. The detailed mechanism responsible for this action remains unknown and requires further research.
Collapse
|
5
|
Bannier MAGE, Rosias PPR, Jöbsis Q, Dompeling E. Exhaled Breath Condensate in Childhood Asthma: A Review and Current Perspective. Front Pediatr 2019; 7:150. [PMID: 31106182 PMCID: PMC6494934 DOI: 10.3389/fped.2019.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Exhaled breath condensate (EBC) was introduced more than two decades ago as a novel, non-invasive tool to assess airway inflammation. This review summarizes the latest literature on the various markers in EBC to predict asthma in children. Despite many recommendations and two comprehensive Task Force reports, there is still large heterogeneity in published data. The biggest issue remains a lack of standardization regarding EBC collection, preservation, processing, and analysis. As a result, published studies show mixed or conflicting results, questioning the reproducibility of findings. A joint, multicenter research study is urgently needed to address the necessary methodological standardization.
Collapse
Affiliation(s)
- Michiel A G E Bannier
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Quirijn Jöbsis
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| | - Edward Dompeling
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
6
|
Dragicevic S, Kosnik M, Divac Rankov A, Rijavec M, Milosevic K, Korosec P, Skerbinjek Kavalar M, Nikolic A. The Variants in the 3' Untranslated Region of the Matrix Metalloproteinase 9 Gene as Modulators of Treatment Outcome in Children with Asthma. Lung 2018; 196:297-303. [PMID: 29600353 DOI: 10.1007/s00408-018-0113-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE The maintaining of asthma control is difficult due to high variability in response to therapy among patients. Since matrix metalloproteinase 9 (MMP9) is implicated in inflammation and remodeling of asthmatic airways, it could be associated with adequate response to asthma therapy. The aim of this study was to investigate whether variants in 3' end of the MMP9 gene are associated with clinical phenotype and responsiveness to treatment in children with asthma. METHODS The study included 127 asthmatic children from Slovenia. Variants in the 3' end of the MMP9 gene were analyzed by direct DNA sequencing and the obtained results were correlated with clinical parameters. RESULTS Two variants were detected, rs13925 and rs20544. For the variant rs20544, statistically significant difference in airway hyperresponsiveness (p = 0.011) and asthma control (p = 0.049) between genotypes was found. Patients with TT genotype had lower airway sensitivity, and after 12 months of treatment showed significant improvement in Asthma Control Test (ACT) scores compared to CC and CT genotype. For the variant rs13925, the association with lung function was observed. The carriers of A allele showed noticeable improvement of lung function after the first 6 months of treatment in comparison to the carriers of G allele (p = 0.046). CONCLUSION The main finding of our study is the association of MMP9 genotypes rs20544 TT and rs13925 AA and AG with better asthma control, and indirectly better response to treatment. Based on these results, MMP9 deserves further research as a potential predictive biomarker for asthma.
Collapse
Affiliation(s)
- Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia.
| | - Mitja Kosnik
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204, Golnik, Slovenia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204, Golnik, Slovenia
| | - Katarina Milosevic
- Department of Pulmonology and Allergology, University Children's Hospital, Tirsova 10, 11000, Belgrade, Serbia
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204, Golnik, Slovenia
| | - Maja Skerbinjek Kavalar
- University Clinical Centre Maribor, Ljubljanska Ulica 5, 2000, Maribor, Slovenia.,Private Practice Cebelica, Lavričeva Ulica 1a, 2000, Maribor, Slovenia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| |
Collapse
|
7
|
Shin NR, Ryu HW, Ko JW, Park SH, Yuk HJ, Kim HJ, Kim JC, Jeong SH, Shin IS. Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:108-115. [PMID: 28735728 DOI: 10.1016/j.jep.2017.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/08/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi is a traditional herbal medicine in Korea and commonly called as mugwort. It is traditionally used as food source and tea to control abdominal pain, dysmenorrhea, uterine hemorrhage, and inflammation. AIM OF THE STUDY We investigated the effects of A. argyi (TOTAL) and dehydromatricarin A (DA), its active component on ovalbumin (OVA)-induced allergic asthma. MATERIALS AND METHODS The animals were sensitized on day 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On day 21, 22 and 23 after the initial sensitization, the animals received an airway challenge with OVA for 1h using an ultrasonic nebulizer. TOTAL (50 and 100mg/kg) or DA (10 and 20mg/kg) were administered to mice by oral gavage once daily from day 18-23. Airway hyperresponsiveness (AHR) was measured 24h after final OVA challenge. RESULT TOTAL and DA treated animals reduced inflammatory cell counts, cytokines and AHR in asthmatic animals, which was accompanied with inflammatory cell accumulation and mucus hypersecretion. Furthermore, TOTAL and DA significantly declined Erk phosphorylation and the expression of MMP-9 in asthmatic animals. CONCLUSION In conclusion, we indicate that Total and DA suppress allergic inflammatory responses caused by OVA challenge. It was considered that A. argyi has a potential for treating allergic asthma.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience&Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 28116, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Heung-Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience&Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 28116, Republic of Korea
| | - Ha-Jung Kim
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Seong-Hun Jeong
- Namhae Garlic Research Institute, Namhae-gun, Kyungnam 668-812, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 project team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
8
|
Grzela K, Litwiniuk M, Krejner A, Zagorska W, Grzela T. Increased angiogenic factors in exhaled breath condensate of children with severe asthma - New markers of disease progression? Respir Med 2016; 118:119-121. [PMID: 27578480 DOI: 10.1016/j.rmed.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/03/2016] [Accepted: 08/07/2016] [Indexed: 11/17/2022]
Abstract
Asthma progression is associated with airway remodeling and neo-vascularization. However, role of angiogenesis in these changes remains unclear and available data still incomplete. In this pilot study we verify usefulness of proteome profiler assay in screening of angiogenesis-related factors in exhaled breath condensates (EBC) collected from children with asthma. EBC samples from patients with mild or severe asthma and healthy controls were tested using protein array. In EBC samples from patients with severe asthma we have found large quantities of several angiogenesis regulators, including thrombospondin (TSP)-1, angiogenin, dipeptidyl peptidase (DPP) IV, matrix metalloproteinase (MMP)-9 and its inhibitor TIMP-1. Small amounts of angiopoietin (Ang)-2 and vascular endothelial growth factor (VEGF) were also present. In contrast to them, in EBC from mild asthma group we have detected TSP-1 and small quantities of Ang-2. EBC samples from healthy controls contained only TSP-1. Our preliminary report suggests that, since increased amounts of angiogenesis-related factors in EBC seem to correlate with asthma severity, they may be considered as convenient non-invasive markers of disease progression. However, further research is necessary.
Collapse
Affiliation(s)
- Katarzyna Grzela
- Department of Paediatrics, Pneumonology and Allergology, Medical University of Warsaw, Poland
| | - Malgorzata Litwiniuk
- Department of Histology and Embryology, Medical University of Warsaw, Poland; Potgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Alicja Krejner
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Wioletta Zagorska
- Department of Paediatrics, Pneumonology and Allergology, Medical University of Warsaw, Poland
| | - Tomasz Grzela
- Department of Histology and Embryology, Medical University of Warsaw, Poland.
| |
Collapse
|