1
|
Roseen EJ, Natrakul A, Kim B, Broder-Fingert S. Process mapping with failure mode and effects analysis to identify determinants of implementation in healthcare settings: a guide. Implement Sci Commun 2024; 5:110. [PMID: 39380121 PMCID: PMC11459716 DOI: 10.1186/s43058-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Generating and analyzing process maps can help identify and prioritize barriers to the implementation of evidence-based practices in healthcare settings. Guidance on how to systematically apply and report these methods in implementation research is scant. We describe a method combining a qualitative approach to developing process maps with a quantitative evaluation of maps drawn from the quality improvement literature called failure mode and effects analysis (FMEA). METHODS We provide an outline and guidance for how investigators can use process mapping with FMEA to identify and prioritize barriers when implementing evidence-based clinical interventions. Suggestions for methods and reporting were generated based on established procedures for process mapping with FMEA and through review of original research papers which apply both methods in healthcare settings. We provide case examples to illustrate how this approach can be operationalized in implementation research. RESULTS The methodology of process mapping with FMEA can be divided into four broad phases: 1) formulating a plan, 2) generating process maps to identify and organize barriers over time, 3) prioritizing barriers through FMEA, and 4) devising an implementation strategy to address priority barriers. We identified 14 steps across the four phases. Two illustrative examples are provided. Case 1 describes the implementation of referrals to chiropractic care for adults with low back pain in primary care clinics. Case 2 describes the implementation of a family navigation intervention for children with autism spectrum disorder seeking care in pediatric clinics. For provisional guidance for reporting, we propose the REporting Process mapping and Analysis for Implementation Research (REPAIR) checklist. CONCLUSIONS Process mapping with FMEA can elucidate barriers and facilitators to successful implementation of evidence-based clinical interventions. This paper provides initial guidance for more systematic applications of this methodology in implementation research. Future research should use a consensus-building approach, such as a multidisciplinary Delphi panel, to further delineate the reporting standards for studies that use process mapping with FMEA.
Collapse
Affiliation(s)
- Eric J Roseen
- Section of General Internal Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 801 Massachusetts Ave, Second Floor, Boston, MA, USA.
| | - Anna Natrakul
- Section of General Internal Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 801 Massachusetts Ave, Second Floor, Boston, MA, USA
| | - Bo Kim
- Center for Healthcare Optimization and Implementation Research, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
2
|
Liu S, Jones E. Clinical implementation of failure modes and effects analysis for gynecological high-dose-rate brachytherapy. J Contemp Brachytherapy 2024; 16:35-47. [PMID: 38584884 PMCID: PMC10993892 DOI: 10.5114/jcb.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose To use failure modes and effects analysis (FMEA) to identify failure modes for gynecological high-dose-rate (HDR) brachytherapy pathway and score with severity, occurrence, and detectability. Material and methods A research team was organized to observe gynecological HDR brachytherapy pathway, and draw detailed process map to identify all potential failure modes (FMs). The whole team scored FMs based on three parameters, including occurrence (O), detectability (D), and severity (S), and then multiplied three scores to obtain risk priority number (RPN). All FMs were ranked according to RPNs and/or severity scores, and FMs with the highest RPN scores (> 100) and severity scores (> 8) were selected for in-depth analysis. Fault tree analysis (FTA) was applied to find progenitor causes of high-risk FMs and their propagation path, and determine which steps in the process need to be changed and optimized. Efficiency of each existing preventive methods to detect and stop FMs was analyzed, and proposals to improve quality management (QM) and ensure patient safety were suggested. Results The whole gynecological HDR brachytherapy pathway consisted of 5 sub-processes and 30 specific steps, in which 57 FMs were identified. Twelve high-risk FMs were found, including 7 FMs with RPNs > 100 and 5 FMs with severity scores > 8. For these FMs, 2 were in the insertion stage, 1 in the imaging stage, 4 in the treatment planning stage, and 5 in the final stage of treatment delivery. The most serious of these FMs was the change in organ at risk (OAR) during treatment delivery (RPN = 245.7). The FM that occurred most frequently was the applicator shift during patient transfer. Conclusions Failure modes and effects analysis is a prospective risk-based tool that can identity high-risk steps before failures occur, provide preventive measures to stop their occurrence, and improve quality management system.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Medical Engineering, Peking Union Medical College Hospital, Beijing, China
| | - Emma Jones
- Radiotherapy Physics and Engineering, Department of Medical Physics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Rahman M, Zhang R, Gladstone DJ, Williams BB, Chen E, Dexter CA, Thompson L, Bruza P, Pogue BW. Failure Mode and Effects Analysis for Experimental Use of FLASH on a Clinical Accelerator. Pract Radiat Oncol 2023; 13:153-165. [PMID: 36375771 PMCID: PMC10373055 DOI: 10.1016/j.prro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/21/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE The use of a linear accelerator (LINAC) in ultrahigh-dose-rate (UHDR) mode can provide a conduit for wider access to UHDR FLASH effects, sparing normal tissue, but care needs to be taken in the use of such systems to ensure errors are minimized. The failure mode and effects analysis was carried out in a team that has been involved in converting a LINAC between clinical use and UHDR experimental mode for more than 1 year after the proposed methods of TG100. METHODS AND MATERIALS A team of 9 professionals with extensive experience were polled to outline the process map and workflow for analysis, and developed fault trees for potential errors, as well as failure modes that would result. The team scored the categories of severity magnitude, occurrence likelihood, and detectability potential in a scale of 1 to 10, so that a risk priority number (RPN = severity×occurrence×detectability) could be assessed for each. RESULTS A total of 46 potential failure modes were identified, including 5 with an RPN >100. These failure modes involved (1) patient set up, (2) gating mechanisms in delivery, and (3) detector in the beam stop mechanism. The identified methods to mitigate errors included the (1) use of a checklist post conversion, (2) use of robust radiation detectors, (3) automation of quality assurance and beam consistency checks, and (4) implementation of surface guidance during beam delivery. CONCLUSIONS The failure mode and effects analysis process was considered critically important in this setting of a new use of a LINAC, and the expert team developed a higher level of confidence in the ability to safely move UHDR LINAC use toward expanded research access.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Erli Chen
- Cheshire Medical Center, Keene, New Hampshire
| | - Chad A Dexter
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lawrence Thompson
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
4
|
Ahmed S, Bossenberger T, Nalichowski A, Bredfeldt JS, Bartlett S, Bertone K, Dominello M, Dziemianowicz M, Komajda M, Makrigiorgos GM, Marcus KJ, Ng A, Thomas M, Burmeister J. A bi-institutional multi-disciplinary failure mode and effects analysis (FMEA) for a Co-60 based total body irradiation technique. Radiat Oncol 2021; 16:224. [PMID: 34798879 PMCID: PMC8605584 DOI: 10.1186/s13014-021-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We aim to assess the risks associated with total body irradiation (TBI) delivered using a commercial dedicated Co-60 irradiator, and to evaluate inter-institutional and inter-professional variations in the estimation of these risks. METHODS A failure mode and effects analysis (FMEA) was generated using guidance from the AAPM TG-100 report for quantitative estimation of prospective risk metrics. Thirteen radiation oncology professionals from two institutions rated possible failure modes (FMs) for occurrence (O), severity (S), and detectability (D) indices to generate a risk priority number (RPN). The FMs were ranked by descending RPN value. Absolute gross differences (AGD) in resulting RPN values and Jaccard Index (JI; for the top 20 FMs) were calculated. The results were compared between professions and institutions. RESULTS A total of 87 potential FMs (57, 15, 10, 3, and 2 for treatment, quality assurance, planning, simulation, and logistics respectively) were identified and ranked, with individual RPN ranging between 1-420 and mean RPN values ranging between 6 and 74. The two institutions shared 6 of their respective top 20 FMs. For various institutional and professional comparison pairs, the number of common FMs in the top 20 FMs ranged from 6 to 13, with JI values of 18-48%. For the top 20 FMs, the trend in inter-professional variability was institution-specific. The mean AGD values ranged between 12.5 and 74.5 for various comparison pairs. AGD values differed the most for medical physicists (MPs) in comparison to other specialties i.e. radiation oncologists (ROs) and radiation therapists (RTs) [MPs-vs-ROs: 36.3 (standard deviation SD = 34.1); MPs-vs-RTs: 41.2 (SD = 37.9); ROs-vs-RTs: 12.5 (SD = 10.8)]. Trends in inter-professional AGD values were similar for both institutions. CONCLUSION This inter-institutional comparison provides prospective risk analysis for a new treatment delivery unit and illustrates the institution-specific nature of FM prioritization, primarily due to operational differences. Despite being subjective in nature, the FMEA is a valuable tool to ensure the identification of the most significant risks, particularly when implementing a novel treatment modality. The creation of a bi-institutional, multidisciplinary FMEA for this unique TBI technique has not only helped identify potential risks but also served as an opportunity to evaluate clinical and safety practices from the perspective of both multiple professional roles and different institutions.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Todd Bossenberger
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Adrian Nalichowski
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Jeremy S Bredfeldt
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Bartlett
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kristen Bertone
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark Dziemianowicz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Melanie Komajda
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - G Mike Makrigiorgos
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Karen J Marcus
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrea Ng
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Marvin Thomas
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| |
Collapse
|
5
|
Hoisak JDP, Manger R, Dragojević I. Benchmarking failure mode and effects analysis of electronic brachytherapy with data from incident learning systems. Brachytherapy 2021; 20:645-654. [PMID: 33353846 DOI: 10.1016/j.brachy.2020.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Failure modes and effects analysis (FMEA) is a prospective risk assessment tool for identifying failure modes in equipment or processes and informing the design of quality control systems. This work aims to benchmark the performance of FMEAs for electronic brachytherapy (eBT) of the skin and for breast by comparing predicted versus actual failure modes reported in multiple incident learning systems (ILS). METHODS AND MATERIALS Two public and our institution's internal ILS were queried for Xoft Axxent eBT-related events over 9 years. The failure modes and Risk Priority Numbers (RPNs) were taken from FMEAs previously performed for Xoft eBT of nonmelanoma skin cancer and breast intraoperative radiation therapy (IORT). For each event, the treatment site and primary failure mode was compared with the failure modes and RPNs from that site's FMEA. RESULTS 49 events involving Xoft eBT were identified. Thirty-one (63.3%) involved breast IORT, and 18 (36.7%) involved the skin. Three events could not be linked to an FMEA failure mode. In 87.7% of events, the primary failure mode ranked in the FMEA top 10 by RPNs. In 83.3% of skin events, the failure modes ranked in the top 10 by RPN or severity. In 90.3% of IORT events, the failure modes ranked within the top 10 by RPN or severity. CONCLUSIONS Evaluating FMEA failure modes against ILS data demonstrates that FMEA is effective at predicting failure modes but can be dependent on user experience. ILS data can improve FMEA by identifying potential failure modes and suggesting realistic occurrence, detectability, and severity values.
Collapse
Affiliation(s)
- Jeremy D P Hoisak
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA.
| | - Ryan Manger
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA
| | - Irena Dragojević
- Department of Radiation Medicine & Applied Sciences, UC San Diego, La Jolla, CA
| |
Collapse
|
6
|
Fulkerson RK, Perez‐Calatayud J, Ballester F, Buzurovic I, Kim Y, Niatsetski Y, Ouhib Z, Pai S, Rivard MJ, Rong Y, Siebert F, Thomadsen BR, Weigand F. Surface brachytherapy: Joint report of the AAPM and the GEC‐ESTRO Task Group No. 253. Med Phys 2020; 47:e951-e987. [DOI: 10.1002/mp.14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Regina K. Fulkerson
- Department of Medical Physics University of Wisconsin–Madison Madison WI53705 USA
| | - Jose Perez‐Calatayud
- Radiotherapy Department La Fe Hospital Valencia46026 Spain
- Radiotherapy Department Clinica Benidorm Alicante03501 Spain
| | - Facundo Ballester
- Department of Atomic, Molecular and Nuclear Physics University of Valencia Burjassot46100 Spain
| | - Ivan Buzurovic
- Dana‐Farber/Brigham and Women’s Cancer Center Harvard Medical School Boston MA02115 USA
| | - Yongbok Kim
- Department of Radiation Oncology University of Arizona Tucson AZ85724 USA
| | - Yury Niatsetski
- R&D Elekta Brachytherapy Waardgelder 1 Veenendaal3903 DD Netherlands
| | - Zoubir Ouhib
- Radiation Oncology Department Lynn Regional Cancer CenterBoca Raton Community Hospital Boca Raton FL33486 USA
| | - Sujatha Pai
- Radion Inc. 20380 Town Center Lane, Suite 135 Cupertino CA95014 USA
| | - Mark J. Rivard
- Department of Radiation Oncology Alpert Medical School Brown University Providence RI02903 USA
| | - Yi Rong
- Department of Radiation Oncology University of California Davis Comprehensive Cancer Center Sacramento CA95817 USA
| | - Frank‐André Siebert
- UK S‐HCampus Kiel, Klinik fur Strahlentherapie (Radioonkologie) Arnold‐Heller‐Str. 3Haus 50 KielD‐24105 Germany
| | - Bruce R. Thomadsen
- Department of Medical Physics University of Wisconsin–Madison Madison WI53705 USA
| | - Frank Weigand
- Carl Zeiss Meditec AG Rudolf‐Eber‐Straße 11 Oberkochen73447 Germany
| |
Collapse
|
7
|
Liu HC, Zhang LJ, Ping YJ, Wang L. Failure mode and effects analysis for proactive healthcare risk evaluation: A systematic literature review. J Eval Clin Pract 2020; 26:1320-1337. [PMID: 31849153 DOI: 10.1111/jep.13317] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE, AIMS, AND OBJECTIVES Failure mode and effects analysis (FMEA) is a valuable reliability management tool that can preemptively identify the potential failures of a system and assess their causes and effects, thereby preventing them from occurring. The use of FMEA in the healthcare setting has become increasingly popular over the last decade, being applied to a multitude of different areas. The objective of this study is to review comprehensively the literature regarding the application of FMEA for healthcare risk analysis. METHODS An extensive search was carried out in the scholarly databases of Scopus and PubMed, and we only chose the academic articles which used the FMEA technique to solve healthcare risk analysis problems. Furthermore, a bibliometric analysis was performed based on the number of citations, publication year, appeared journals, authors, and country of origin. RESULTS A total of 158 journal papers published over the period of 1998 to 2018 were extracted and reviewed. These publications were classified into four categories (ie, healthcare process, hospital management, hospital informatization, and medical equipment and production) according to the healthcare issues to be solved, and analyzed regarding the application fields and the utilized FMEA methods. CONCLUSION FMEA has high practicality for healthcare quality improvement and error reduction and has been prevalently employed to improve healthcare processes in hospitals. This research supports academics and practitioners in effectively adopting the FMEA tool to proactively reduce healthcare risks and increase patient safety, and provides an insight into its state-of-the-art.
Collapse
Affiliation(s)
- Hu-Chen Liu
- School of Economics and Management, Tongji University, Shanghai, People's Republic of China
- College of Economics and Management, China Jiliang University, Hangzhou, People'sRepublic of China
| | - Li-Jun Zhang
- School of Management, Shanghai University, Shanghai, People's Republic of China
| | - Ye-Jia Ping
- School of Management, Shanghai University, Shanghai, People's Republic of China
| | - Liang Wang
- School of Management, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Risk analysis of electronic intraoperative radiation therapy for breast cancer. Brachytherapy 2019; 18:271-276. [DOI: 10.1016/j.brachy.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
|
9
|
Manger R, Rahn D, Hoisak J, Dragojević I. Improving the treatment planning and delivery process of Xoft electronic skin brachytherapy. Brachytherapy 2018; 17:702-708. [DOI: 10.1016/j.brachy.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 10/28/2022]
|
10
|
Ibanez-Rosello B, Bautista JA, Bonaque J, Perez-Calatayud J, Gonzalez-Sanchis A, Lopez-Torrecilla J, Brualla-Gonzalez L, Garcia-Hernandez T, Vicedo-Gonzalez A, Granero D, Serrano A, Borderia B, Solera C, Rosello J. Failure modes and effects analysis of total skin electron irradiation technique. Clin Transl Oncol 2017; 20:330-365. [PMID: 28779421 DOI: 10.1007/s12094-017-1721-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/24/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Total skin electron irradiation (TSEI) is a radiotherapy technique which consists of an homogeneous body surface irradiation by electrons. This treatment requires very strict technical and dosimetric conditions, requiring the implementation of multiple controls. Recently, the Task Group 100 report of the AAPM has recommended adapting the quality assurance program of the facility to the risks of their processes. MATERIALS AND METHODS A multidisciplinary team evaluated the potential failure modes (FMs) of every process step, regardless of the management tools applied in the installation. For every FM, occurrence (O), severity (S) and detectability (D) by consensus was evaluated, which resulted in the risk priority number (RPN), which permitted the ranking of the FMs. Subsequently, all the management tools used, related to the TSEI process, were examined and the FMs were reevaluated, to analyze the effectiveness of these tools and to propose new management tools to cover the greater risk FMs. RESULTS 361 FMs were identified, 103 of which had RPN ≥80, initially, and 41 had S ≥ 8. Taking this into account the quality management tools FMs were reevaluated and only 30 FMs had RPN ≥80. The study of these 30 FMs emphasized that the FMs that involved greater risk were related to the diffuser screen placement and the patient's position during treatment. CONCLUSIONS The quality assurance program of the facility has been adapted to the risk of this treatment process, following the guidelines proposed by the TG-100. However, clinical experience continually reveals new FMs, so the need for periodic risk analysis is required.
Collapse
Affiliation(s)
- B Ibanez-Rosello
- Radiation Oncology Department, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - J A Bautista
- Radiation Oncology Department, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - J Bonaque
- Radiation Oncology Department, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - J Perez-Calatayud
- Radiation Oncology Department, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV), 46026, Valencia, Spain
| | - A Gonzalez-Sanchis
- Radiation Oncology Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - J Lopez-Torrecilla
- Radiation Oncology Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - L Brualla-Gonzalez
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - T Garcia-Hernandez
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - A Vicedo-Gonzalez
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - D Granero
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - A Serrano
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - B Borderia
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - C Solera
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
| | - J Rosello
- Medical Physics Department, ERESA, Hospital General Universitario, 46014, Valencia, Spain
- Physiology Department, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
11
|
Two years results of electronic brachytherapy for basal cell carcinoma. J Contemp Brachytherapy 2017; 9:251-255. [PMID: 28725249 PMCID: PMC5509982 DOI: 10.5114/jcb.2017.68191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/02/2017] [Indexed: 11/17/2022] Open
Abstract
Purpose The use of radiation therapy (RT) for non-melanoma skin cancer (NMSC) has been changing throughout the last century. Over the last decades, the use of radiotherapy has surged with the development of new techniques, applicators, and devices. In recent years, electronic brachytherapy (eBT) devices that use small x-ray sources have been introduced as alternative to radionuclide dependence. Nowadays, several devices have been incorporated, with a few series reported, and with a short follow-up, due to the recent introduction of these systems. The purpose of this work is to describe the clinical results of our series after two years follow-up with a specific eBT system. Material and methods This is a prospective single-center, non-randomized pilot study, to assess clinical results of electronic brachytherapy in basal cell carcinoma using the Esteya® system. In 2014, 40 patients with 60 lesions were treated. Patient follow-up on a regular basis was performed for a period of two years. Results Twenty-six patients with 44 lesions achieved two years follow-up. A complete response was documented in 95.5% of cases. Toxicity was mild (G1 or G2) in all cases, caused by erythema, erosion, or alopecia. Cosmesis was excellent in 88.6% of cases, and good in the rest. Change in pigmentation was the most frequent cosmetic alteration. Conclusions This work is special, since the equipment’s treatment voltage was 69.5 kV, and this is the first prospective study with long term follow-up with Esteya®. These preliminary report show excellent results with less toxicity and excellent cosmesis. While surgery has been the treatment of choice, certain patients might benefit from eBT treatment. These are elderly patients with comorbidities or undergoing anticoagulant treatment as well as those who simply refuse surgery or might have other contraindications.
Collapse
|