1
|
Zhou D, Zeng Y, Luo W, Leng C, Li C. Senior-Loken Syndrome: Ocular Perspectives on Genetics, Pathogenesis, and Management. Biomolecules 2025; 15:667. [PMID: 40427560 PMCID: PMC12109206 DOI: 10.3390/biom15050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Senior-Loken syndrome (SLSN) is a group of rare autosomal recessive disorders caused by dysfunction of the primary cilium, primarily affecting the kidneys (typically leading to nephronophthisis) and eyes (typically leading to retinal degeneration). Moreover, patients with SLSN may experience additional multisystemic symptoms, such as developmental delay, intellectual disability, ataxia, and nystagmus. To date, eight genes have been demonstrated to cause SLSN, all encoding for proteins involved in the structure and functions of the primary cilium. This places SLSN within an expanding category of diseases known as "ciliopathies". Due to the genetic heterogeneity and significant phenotypic overlap with other ciliopathies, establishing a definitive diagnosis during the initial consultation remains a challenge for clinicians. Furthermore, current research on SLSN-related ciliopathies predominantly focuses on renal involvement, while the ocular manifestations remain insufficiently explored and lack a comprehensive review. Therefore, with the goal of offering practical guidance for clinical practice, this review aims to provide a comprehensive overview of the clinical features, along with an ocular perspective on the molecular mechanisms, genetic underpinnings, and advances in the treatment of SLSN.
Collapse
Affiliation(s)
- Di Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100076, China;
| | - Yi Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Weihan Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chenyang Leng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chen Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| |
Collapse
|
2
|
Munoz-Gualan AP, Güngör A, Cezayirli PC, Rahmanov S, Gurses ME, Puelles L, Türe U. Human Adapted Prosomeric Model: A Future for Brainstem Tumor Classification. Brain Res 2024; 1837:148961. [PMID: 38679312 DOI: 10.1016/j.brainres.2024.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
This study reevaluates the conventional understanding of midbrain anatomy and neuroanatomical nomenclature in the context of recent genetic and anatomical discoveries. The authors assert that the midbrain should be viewed as an integral part of the forebrain due to shared genetic determinants and evolutionary lineage. The isthmo-mesencephalic boundary is recognized as a significant organizer for both the caudal midbrain and the isthmo-cerebellar area. The article adopts the prosomeric model, redefining the whole brain as neuromeres, offering a more precise depiction of brain development, including processes like proliferation, neurogenesis, cell migration, and differentiation. This shift in understanding challenges traditional definitions of the midbrain based on external brain morphology. The study also delves into the historical context of neuroanatomical models, including the columnar model proposed by Herrick in 1910, which has influenced our understanding of brain structure. Furthermore, the study has clinical implications, affecting neuroanatomy, neurodevelopmental studies, and the diagnosis and treatment of brain disorders. It emphasizes the need to integrate molecular research into human neuroanatomical studies and advocates for updating neuroanatomical terminology to reflect modern genetic and molecular insights. The authors propose two key revisions. First, we suggest reclassifying the isthmo-cerebellar prepontine region as part of the hindbrain, due to its role in cerebellar development and distinct location caudal to the genetically-defined midbrain. Second, we recommend redefining the anterior boundary of the genetically-defined midbrain to align with genetic markers. In conclusion, the authors highlight the importance of harmonizing neuroanatomical nomenclature with current scientific knowledge, promoting a more precise and informed understanding of brain structure, which is crucial for both research and clinical applications related to the human brain.
Collapse
Affiliation(s)
| | - Abuzer Güngör
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Istinye University, Istanbul, Turkey
| | - Phillip Cem Cezayirli
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Haynes Neurosurgical Group, Birmingham, AL, United States
| | - Serdar Rahmanov
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia -IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Sakurai Y, Watanabe T, Abe Y, Nawa T, Uchida T, Aoi H, Mizuguchi T, Matsumoto N, Haginoya K. Head titubation and irritability as early symptoms of Joubert syndrome with a homozygous NPHP1 variant. Brain Dev 2021; 43:863-866. [PMID: 34090716 DOI: 10.1016/j.braindev.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Joubert syndrome is an autosomal recessive or X-linked genetic disease with a cerebellar vermis defect or hypoplasia, hypotonia, ocular dyskinesia, and mental retardation. In neonates, respiratory problems such as apnea and tachypnea are notable. CASE REPORT We report a patient Joubert syndrome with a homozygous NPHP1 variant, who had head titubation with irritability, including exaggerated jitteriness and a marked Morrow reflex appeared soon after birth without neonatal respiratory problems. These symptoms decreased gradually and disappeared until 1 year. CONCLUSION Irritability with head titubation may be an early clinical clue for the clinician to suspect Joubert syndrome.
Collapse
Affiliation(s)
- Yoshie Sakurai
- Department of Neonatology, Miyagi Children's Hospital, Japan.
| | | | - Yuki Abe
- Department of Neonatology, Miyagi Children's Hospital, Japan
| | - Tatsuro Nawa
- Department of Neonatology, Miyagi Children's Hospital, Japan
| | | | - Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Japan
| |
Collapse
|
4
|
Zhang C, Sun Z, Xu L, Che F, Liu S. Novel compound heterozygous CPLANE1 variants identified in a Chinese family with Joubert syndrome. Int J Dev Neurosci 2021; 81:529-538. [PMID: 34091942 DOI: 10.1002/jdn.10135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/08/2022] Open
Abstract
Joubert syndrome (JS) and JS-related disorders (JSRD) are a group of neurodevelopmental diseases that share the "molar tooth sign" on axial brain magnetic resonance imaging (MRI), accompanied by cerebellar vermis hypoplasia, ataxia, hypotonia, and developmental delay. To identify variants responsible for the clinical symptoms of a Chinese family with JS and to explore the genotype-phenotype associations, we conducted a series of clinical examinations, including blood tests, brain MRI scans, ultrasound imaging, and ophthalmologic examination. Genomic DNA was extracted from the peripheral blood of the six-person family, and the pathogenic variants were detected by whole-exome sequencing (WES) and verified by Sanger sequencing. WES revealed two novel compound heterozygous variants in CPLANE1: c.1270C>T (p.Arg424*) in exon 10 and c.8901C>A (p.Tyr2967*) in exon 48 of one child, inherited from each parent. Both variants were absent in ethnically matched Chinese control individuals and were either absent or present at very low frequencies in public databases, suggesting that these variants could be the pathogenic triggers of the JS phenotype. Notably, these CPLANE1 sequence variants were related to the pathogenesis of autosomal recessive JS in this study. The newly discovered variants expand the mutation spectrum of CPLANE1, which assists in understanding the molecular mechanism underlying JS and improving the recognition of genetic counseling, particularly for families with a history of autosomal recessive JS.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China.,Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenchao Sun
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Prenatal Ultrasonographic Molar Tooth Sign: Case Reports and Review of Literature. JOURNAL OF FETAL MEDICINE 2021. [DOI: 10.1007/s40556-021-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Powell L, Barroso-Gil M, Clowry GJ, Devlin LA, Molinari E, Ramsbottom SA, Miles CG, Sayer JA. Expression patterns of ciliopathy genes ARL3 and CEP120 reveal roles in multisystem development. BMC DEVELOPMENTAL BIOLOGY 2020; 20:26. [PMID: 33297941 PMCID: PMC7727171 DOI: 10.1186/s12861-020-00231-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Joubert syndrome and related disorders (JSRD) and Jeune syndrome are multisystem ciliopathy disorders with overlapping phenotypes. There are a growing number of genetic causes for these rare syndromes, including the recently described genes ARL3 and CEP120. METHODS We sought to explore the developmental expression patterns of ARL3 and CEP120 in humans to gain additional understanding of these genetic conditions. We used an RNA in situ detection technique called RNAscope to characterise ARL3 and CEP120 expression patterns in human embryos and foetuses in collaboration with the MRC-Wellcome Trust Human Developmental Biology Resource. RESULTS Both ARL3 and CEP120 are expressed in early human brain development, including the cerebellum and in the developing retina and kidney, consistent with the clinical phenotypes seen with pathogenic variants in these genes. CONCLUSIONS This study provides insights into the potential pathogenesis of JSRD by uncovering the spatial expression of two JSRD-causative genes during normal human development.
Collapse
Affiliation(s)
- L Powell
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - M Barroso-Gil
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - G J Clowry
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - L A Devlin
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - E Molinari
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - S A Ramsbottom
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - C G Miles
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - J A Sayer
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
- The Newcastle Hospitals NHS Foundation Trust, Freeman Road, Newcastle upon Tyne, NE7 7DN, UK.
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
7
|
Abstract
Joubert syndrome (JS) is a rare genetic ciliopathy characterized by the aplasia or malformation of the midbrain and or hindbrain structures. It usually manifests during the early stages with nonspecific neurological symptoms that progress to involve multiple systems. Its presentation similarity to other neurological disorders makes the diagnosis difficult, hence causing a delay in treatment and worse prognosis due to complications. If undiagnosed during childhood, it often presents during adolescence with the most common complication of acute kidney injury due to nephronophthisis. Here, we present a case of JS in late adolescence with renal complications and other neurological abnormalities. We aim to emphasize the importance of its early diagnosis by physicians in childhood to prevent further complications. It also highlights the possible diagnostic value and significance of brain imaging in the early stages when only mild mental retardation signs may be the only clues.
Collapse
Affiliation(s)
- Likhita Shaik
- Internal Medicine, Ashwini Rural Medical College Hospital and Research Centre, Solapur, IND.,Medical Oncology, Mayo Clinic and Foundation, Rochester, USA
| | | | | | | | - Kaushal Shah
- Psychiatry, Griffin Memorial Hospital, Norman, USA
| |
Collapse
|
8
|
Yu X, Zhen Z, Li J, Yang W, Chen X. Prenatal diagnosis of Joubert syndrome by ultrasound and magnetic resonance imaging - report of three cases. Taiwan J Obstet Gynecol 2018; 56:408-409. [PMID: 28600062 DOI: 10.1016/j.tjog.2017.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xudong Yu
- Department of Medical Imaging, HuBei Maternal and Children Healthcare Hospital, Wuhan, China.
| | - Zhong Zhen
- Department of Radiology, People's Hospital of Macheng City, Huanggang, HuBei, China
| | - Juanxia Li
- Department of Obstetrics and Gynecology, People's Hospital of Macheng City, Huanggang, HuBei, China
| | - Wenzhong Yang
- Department of Medical Imaging, HuBei Maternal and Children Healthcare Hospital, Wuhan, China
| | - Xinlin Chen
- Department of Medical Ultrasound, HuBei Maternal and Children Healthcare Hospital, China
| |
Collapse
|
9
|
Lee SH, Nam TS, Li W, Kim JH, Yoon W, Choi YD, Kim KH, Cai H, Kim MJ, Kim C, Choy HE, Kim N, Chay KO, Kim MK, Choi SY. Functional validation of novel MKS3/TMEM67 mutations in COACH syndrome. Sci Rep 2017; 7:10222. [PMID: 28860541 PMCID: PMC5579020 DOI: 10.1038/s41598-017-10652-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
COACH syndrome is an autosomal recessive developmental disorder, a subtype of Joubert syndrome and related disorders, characterized by cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis. Although mutations in TMEM67 (transmembrane protein 67)/MKS3 (Meckel-Gruber syndrome, type 3) were reported to cause COACH syndrome, this causality has not verified by functional studies. In a 20-year-old Korean man, we found cerebellar ataxia, isolated elevation in serum γ-glutamyl transpeptidase (γ-GTP) activity, oligophrenia, the molar tooth sign (MTS) in the brain MR images and congenital hepatic fibrosis (CHF). Two novel compound heterozygous mutations were found in TMEM67 in the patient: i) missense mutation (c.395 G > C and p.Gly132Ala) in exon 3, and ii) deletion in exon 26 (c.2758delT and p.Tyr920ThrfsX40). Western blotting showed that the p.Tyr920ThrfsX40 mutation accelerates turnover of the TMEM67 protein. Although wild-type human TMEM67 RNA rescued phenotypes of zebrafish embryos injected with anti-sense oligonucleotide morpholinos against tmem67, the two human TMEM67 RNAs individually harboring the two mutations did not. Finally, Wnt signaling, but not Hedgehog signaling, was suppressed in tmem67 morphants. To the best of our knowledge, this is the first report verifying the causality between COACH syndrome and TMEM67, which will further our understanding of molecular pathogenesis of the syndrome.
Collapse
Affiliation(s)
- So-Hyun Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.,Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Wenting Li
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Woong Yoon
- Department of Radiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kun-Hee Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hua Cai
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Changsoo Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
10
|
An abnormal ocular motor manifestation of Joubert syndrome. J AAPOS 2017; 21:75-77. [PMID: 27866068 DOI: 10.1016/j.jaapos.2016.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 11/23/2022]
Abstract
Joubert syndrome is a congenital neurodevelopmental disorder primarily affecting the midbrain and hindbrain. It is characterized by ataxia, hypotonia, and developmental delay as well as apnea or abnormal ocular motor function. We describe and present a video of a child with Joubert syndrome with an alternating skew deviation in primary position rather than on lateral gaze, which is a more characteristic phenotype of this condition.
Collapse
|
11
|
Salva I, Albuquerque C, Moreira A, Dâmaso C. Nystagmus in a newborn: a manifestation of Joubert syndrome in the neonatal period. BMJ Case Rep 2016; 2016:bcr-2015-213127. [PMID: 26759440 DOI: 10.1136/bcr-2015-213127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Joubert syndrome is a rare disorder, usually autosomal recessive, with a prevalence of 1:80,000 to 1:100,000. This disease presents most commonly as breathing irregularities, although the two major clinical criteria are hypotonia and developmental delay, sometimes associated with ocular movement abnormalities. The severity of the presentation varies, ranging from mild cases with normal intelligence to severe developmental delays associated with early death. We report a case of a newborn who presented to the emergency department for absent ocular fixation and torsional nystagmus without other neurological abnormalities. Her cranial MR showed cerebellar vermis agenesis and a molar tooth sign. Her laboratory evaluation, and renal and abdominal ultrasound were normal. An electroretinogram showed mixed retinal dystrophy and an AHI1 homozygous missense c.1981T>C mutation was identified (parents are carriers). Throughout infancy, she has shown mild developmental delay and hypotonia, but no respiratory abnormalities. Owing to variable expressivity, a high level of suspicion is required.
Collapse
Affiliation(s)
- Inês Salva
- Department of Pediatrics, Hospital de Dona Estefânia, Lisbon, Portugal
| | | | - Ana Moreira
- Hospital de Dona Estefânia, Lisbon, Portugal
| | | |
Collapse
|
12
|
Manley AT, Maertens PM. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome. J Neuroimaging 2014; 25:510-2. [PMID: 25230909 DOI: 10.1111/jon.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/11/2014] [Accepted: 05/25/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. METHODS In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. RESULTS Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. CONCLUSIONS Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound.
Collapse
Affiliation(s)
- Andrew T Manley
- Department of Neurology, University of South Alabama, Mobile, AL
| | | |
Collapse
|
13
|
Yengkopiong JP, Lako JDW. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes. Int J Nephrol Renovasc Dis 2013; 6:39-46. [PMID: 23549608 PMCID: PMC3579405 DOI: 10.2147/ijnrd.s39295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nephronophthisis (NPHP), which affects multiple organs, is a hereditary cystic kidney disease (CKD), characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac(-/-)) rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats. METHODS Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed. RESULTS It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, χ (2) = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, χ (2) = 0.18, P > 0.05) and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to early pup mortality. CONCLUSION The genetic background of the nonmutant PVG rats does not influence the genetic and phenotypic inheritance of CKD from mutant Lewis polycystic kidney rats. A single recessive mutation incapacitated the gene, which relaxed its functional constraints, and led to formation of multiple cysts in the kidneys of the homozygous mutant rats.
Collapse
Affiliation(s)
- Jada Pasquale Yengkopiong
- John Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South Sudan
| | | |
Collapse
|