1
|
Pandey KK, Mehta K, Kaur B, Dhar P. Curcumin alleviates arsenic trioxide-induced neural damage in the murine striatal region. Psychopharmacology (Berl) 2025; 242:497-520. [PMID: 39443330 DOI: 10.1007/s00213-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
RATIONALE Arsenic-induced neurotoxicity, with dose-dependent effects, is well-documented in rodents. Curcumin (CUR), a cost-effective plant polyphenol, shows neuroprotective effects by modulating oxidative stress, apoptosis, and neurochemistry. This study evaluates curcumin's neuroprotective potential against arsenic trioxide (As2O3) in the mouse striatal region. METHODS Healthy adult male mice were chronically administered with varying concentrations of As2O3 (2, 4 and 8 mg/kg bw) alone and along with CUR (100 mg/kg bw) orally for 45 days. Towards the end of the experimental period, the animals were subjected to behavioural paradigms including open field task, novel object recognition, rota-rod, and Morris water maze. Striatal tissues were freshly collected from the animals on day 46 for biochemical analyses (MDA, GPx, and GSH). Additionally, perfusion-fixed brains were processed for morphological observations. RESULTS Behavioural study showed an apparent decrease in certain cognitive functions (learning and memory) and locomotor activity in mice exposed to As2O3 compared to controls. Simultaneous treatment of As2O3 (2, 4 and 8 mg/kg bw) and curcumin (100 mg/kg bw) alleviated the As-induced locomotor and cognitive deficits. As2O3 alone exposure also exhibited a significant increase in oxidative stress marker (MDA) and a decrease in antioxidant enzyme levels (GPx, GSH). Morphological alterations were noted in mice subjected to elevated doses of As2O3 (4 and 8 mg/kg bw). However, these changes were reversed in mice who received As2O3 + CUR co-treatment. CONCLUSIONS Collectively, our findings indicate that curcumin offers neuroprotection to the striatal region against As2O3-induced behavioral deficits, as well as biochemical and morphological alterations.
Collapse
Affiliation(s)
- Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Ophthalmology, University of Pittsburgh School of Medicine, UPMC Vision Institute, Pittsburgh, PA, 15219, USA.
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Khosravani F, Amiri F, Mahmoudi R, Morshedi D, Kobarfard F, Alipour M, Hosseini E, Bardania H. RGD-decorated nanoliposomes for combined delivery of arsenic trioxide and curcumin to prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2347-2357. [PMID: 37831114 DOI: 10.1007/s00210-023-02752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Nanotechnology and drug co-delivery offer a novel avenue in drug delivery research liposome-based co-delivery of anticancer drugs targeting the apoptosis pathway as a promising new approach to treat cancer. In this study, a co-delivery system of liposomes (arsenic trioxide/curcumin) modified with RGD peptide was designed to aim for enhancing the treatment of prostate cancer cells (PC3 cell line). Liposomal co-loaded curcumin and arsenic trioxide modified by RGD peptide (NLPs-RGD-Cur-ATO) were prepared by thin-layer lipid hydration techniques for the treatment of prostate cancer. The stability of the NLPs-RGD-Cur-ATO was evaluated by particle size analysis through dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). The percentage of cytotoxicity and apoptotic effect in PC3 cells treated with NLPs-RGD-Cur-ATO were detected by MTT and Annexin V-FITC (fluorescein isothiocyanate)/PI affinity assay, respectively. The particle size of NLPs-RGD-Cur-ATO was approximately 100 nm, with an encapsulation efficiency of about 99.52% and 70.61%, for ATO and Cur, respectively. Besides, NLPs-RGD-Cur-ATO displayed an enhanced anti-proliferative effect, increased the percentage of apoptotic cells 98 ± 1.85% (p < 0.0001), and significantly reduced EGFR gene expression level (p < 0.001) in the cell line tested. These results indicated that our NLPs-RGD-Cur-ATO co-delivery system was a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Khosravani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Amiri
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Rouzbeh Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Dina Morshedi
- Bioprocess Engineering Research Group, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Shams Alley, Vali-E-Asr Ave, Tehran, Iran
- Phytochemistry Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Shams Alley, Vali-E-Asr Ave, Tehran, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
3
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
4
|
Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023:S0161-813X(23)00086-4. [PMID: 37331635 DOI: 10.1016/j.neuro.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Groundwater is considered safe, however, the occurrence of contaminants like arsenic and fluoride has raised a major healthcare concern. Clinical studies suggested that arsenic and fluoride co-exposure induced neurotoxicity, however efforts to explore safe and effective management of such neurotoxicity are limited. Therefore, we investigated the ameliorative effect of Fisetin against arsenic and fluoride subacute co-exposure-induced neurotoxicity, and associated biochemical and molecular changes. Male BALB/c mice Arsenic (NaAsO2: 50mg/L) and fluoride (NaF: 50mg/L) were exposed to drinking water and fisetin (5, 10, and 20mg/kg/day) was administered orally for 28 days. The neurobehavioral changes were recorded in the open field, rotarod, grip strength, tail suspension, forced swim, and novel object recognition test. The co-exposure resulted in anxiety-like behaviour, loss of motor coordination, depression-like behaviour, and loss of novelty-based memory, along with enhanced prooxidant, inflammatory markers and loss of cortical and hippocampal neurons. The treatment with fisetin reversed the co-exposure-induced neurobehavioral deficit along with restoration of redox & inflammatory milieu, and cortical and hippocampal neuronal density. Apart from antioxidants, inhibition of TNF-α/ NLRP3 expression has been suggested as one of the plausible neuroprotective mechanisms of Fisetin in this study.
Collapse
Affiliation(s)
- Vitthal V Gopnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Mounisha Bandakinda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India.
| |
Collapse
|
5
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Abstract
Arsenic toxicity is a major concern due to its deleterious consequences for human health. Rapid industrialization also has weakened the quality of the environment by introducing pollutants that may disrupt balanced ecosystems, adversely and irreversibly impacting humans, plants, and animals. Arsenic, an important toxicant among all environmental hazards, can lead to several detrimental effects on cells and organs, impacting the overall quality of life. Nevertheless, arsenic also has a rich history as a chemotherapeutic agent used in ancient days for the treatment of diseases such as malaria, cancer, plague, and syphilis when other chemotherapeutic agents were yet to be discovered. Arsenicosis-mediated disorders remain a serious problem due to the lack of effective therapeutic options. Initially, chelation therapy was used to metabolically eliminate arsenic by forming a complex, but adverse effects limited their pharmacological use. More recently, plant-based products have been found to provide significant relief from the toxic effects of arsenic poisoning. They act by different mechanisms affecting various cellular processes. Phytoconstituents such as curcumin, quercetin, diallyl trisulfide, thymoquinone, and others act via various molecular pathways, primarily by attenuating oxidative damage, membrane damage, DNA damage, and proteinopathies. Nonetheless, most of the phytochemicals reviewed here protect against the adverse effects of metal or metalloid exposure, supporting their consideration as alternatives to chelation therapy. These agents, if used prophylactically and in conjunction with other chemotherapeutic agents, may provide an effective approach for management of arsenic toxicity. In a few instances, such strategies like coadministration of phytochemicals with a known chelating agent have led to more pronounced elimination of arsenic from the body with lesser off-site adverse effects. This is possible because combination treatment ensures the use of a reduced dose of chelating agent with a phytochemical without compromising treatment. Thus, these therapies are more practical than conventional therapeutic agents in ameliorating arsenic-mediated toxicity. This review summarizes the potential of phytochemicals in alleviating arsenic toxicity on the basis of available experimental and clinical evidence.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ankita Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| | - Swaran J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| |
Collapse
|
7
|
Mehta K, Kaur B, Pandey KK, Dhar P, Kaler S. Resveratrol protects against inorganic arsenic-induced oxidative damage and cytoarchitectural alterations in female mouse hippocampus. Acta Histochem 2021; 123:151792. [PMID: 34634674 DOI: 10.1016/j.acthis.2021.151792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Prolonged inorganic arsenic (iAs) exposure is widely associated with brain damage particularly in the hippocampus via oxidative and apoptotic pathways. Resveratrol (RES) has gained considerable attention because of its benefits to human health. However, its neuroprotective potential against iAs-induced toxicity in CA1 region of hippocampus remains unexplored. Therefore, we investigated the neuroprotective efficacy of RES against arsenic trioxide (As2O3)-induced adverse effects on neuronal morphology, apoptotic markers and oxidative stress parameters in mouse CA1 region (hippocampus). Adult female Swiss albino mice of reproductive maturity were orally exposed to either As2O3 (2 and 4 mg/kg bw) alone or in combination with RES (40 mg/kg bw) for a period of 45 days. After animal sacrifice on day 46, the perfusion fixed brain samples were used for the observation of neuronal morphology and studying the morphometric features. While the freshly dissected hippocampi were processed for biochemical estimation of oxidative stress markers and western blotting of apoptosis-associated proteins. Chronic iAs exposure led to significant decrease in Stratum Pyramidale layer thickness along with reduction in cell density and area of Pyramidal neurons in contrast to the controls. Biochemical analysis showed reduced hippocampal GSH content but no change in total nitrite (NO) levels following iAs exposure. Western blotting showed apparent changes in the expression levels of Bax and Bcl-2 proteins following iAs exposure, however the change was statistically insignificant. Contrastingly, iAs +RES co-treatment exhibited substantial reversal in morphological and biochemical observations. Together, these findings provide preliminary evidence of neuroprotective role of RES on structural and biochemical alterations pertaining to mouse hippocampus following chronic iAs exposure.
Collapse
Affiliation(s)
- K Mehta
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - B Kaur
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - K K Pandey
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - P Dhar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - S Kaler
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
8
|
Abstract
With extensive use in industrial and agriculture applications, overexposure to heavy metals has become a global public health concern. The nervous system is vulnerable to many heavy metals, including cadmium, lead, and mercury. However, the knowledge about the underlying mechanisms of these metals' neurotoxicity is still very limited. Adult neurogenesis is a process of generating functional neurons from adult neural progenitor/stem cells (aNPCs), which plays an important role in cognitive function and olfaction. The studies of adult neurogenesis provide new insights into mechanisms of heavy metal neurotoxicity. This review summarizes the current research about the effects of heavy metals on adult neurogenesis and discusses their importance in understanding the mechanisms of heavy metals neurotoxicity, as well as challenges and future directions.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Megumi T. Matsushita
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|