1
|
Voigt I, Mighali M, Wieneke H, Bruder O. Cardiac arrest related lung edema: examining the role of downtimes in transpulmonary thermodilution analysis. Intern Emerg Med 2024; 19:501-509. [PMID: 37700181 DOI: 10.1007/s11739-023-03420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Pulmonary edema and its association with low flow times has been observed in postcardiac arrest patients. However, diagnosis of distinct types of lung pathology is difficult.The aim of this study was to investigate pulmonary edema by transpulmonary thermodilution (TPTD) after out-of-hospital cardiac arrest (OHCA), and the correlation to downtimes. In this retrospective single-center study consecutive patients with return of spontaneous circulation (ROSC) following OHCA, age ≥ 18, and applied TPTD were enrolled. According to downtimes, patients were divided into a short and a long no-flow-time group, and data of TPTD were analysed. We identified 45 patients (n = 25 short no-flow time; n = 20 long no-flow time) who met the inclusion criteria. 24 h after ROSC, the extra vascular lung water index (EVLWI) was found to be lower in the group with short no-flow time compared to the group with long no-flow time (10.7 ± 3.5 ml/kg vs. 12.8 ± 3.9 ml/kg; p = 0.08) and remained at a similar level 48 h (10.9 ± 4.3 ml/kg vs. 12.9 ± 4.9 ml/kg; p = 0.25) and 72 h (11.1 ± 5.0 ml/kg vs. 13.9 ± 7.7 ml/kg; p = 0.27) post-ROSC. We found a statistically significant and moderate correlation between no-flow duration and EVLWI 48 h (r = 0.51; p = 0.002) and 72 h (r = 0.54; p = 0.004) post-ROSC. Pulmonary vascular permeability index (PVPI) was not correlated with downtimes. Our observation underlines the presence of cardiac arrest-related lung edema by determination of EVLWI. The duration of no-flow times is a relevant factor for increased extravascular lung water index.
Collapse
Affiliation(s)
- Ingo Voigt
- Department of Acute and Emergency Medicine, Elisabeth-Hospital Essen, Klara-Kopp-Weg 1, 45138, Essen, Germany.
| | - Marco Mighali
- Department of Acute and Emergency Medicine, Elisabeth-Hospital Essen, Klara-Kopp-Weg 1, 45138, Essen, Germany
| | - Heinrich Wieneke
- Department of Cardiology and Angiology, Contilia Heart and Vascular Center Elisabeth-Hospital Essen, Essen, Germany
- Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Oliver Bruder
- Department of Cardiology and Angiology, Contilia Heart and Vascular Center Elisabeth-Hospital Essen, Essen, Germany
- Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Lee J, Islam M, Yoo Y, Kim S, Kim R, Jang Y, Lee S, Hwang H, Shin H, Hwang J, Kim K, Park B, Ahn D, Lee Y, Kim T, Kim I, Yoon J, Tae H. Changes of antioxidant enzymes in the kidney after cardiac arrest in the rat model. Braz J Med Biol Res 2023; 56:e12408. [PMID: 36790289 PMCID: PMC9925192 DOI: 10.1590/1414-431x2023e12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.
Collapse
Affiliation(s)
- J.H. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - M.S. Islam
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Yoo
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.E. Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine, Jeonbuk National University and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - R.H. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Jang
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.H. Lee
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - H.P. Hwang
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - H.Y. Shin
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - J.H. Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - K. Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - B.Y. Park
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - D. Ahn
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - T. Kim
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - I.S. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - J.C. Yoon
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - H.J. Tae
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
3
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
4
|
Jawad A, Yoo YJ, Cho JH, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Kim K, Ahn D, Park BY, Kim IS, Lee JH, Tae HJ. Therapeutic hypothermia effect on asphyxial cardiac arrest-induced renal ischemia/reperfusion injury via change of Nrf2/HO-1 levels. Exp Ther Med 2021; 22:1031. [PMID: 34373717 PMCID: PMC8343472 DOI: 10.3892/etm.2021.10463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the renoprotective effect of therapeutic hypothermia (TH) on renal ischemia-reperfusion injury (RI/RI) induced by asphyxial cardiac arrest (CA) in rats. A total of 48 male rats were randomly divided into five groups: i) Sham (n=6); ii) Normothermia + CA (Normo.) (n=14); iii) Normo. and 2 h of TH after return of spontaneous circulation (ROSC) (n=12); iv) Normo. and 4 h of TH after ROSC (n=9); and v) Normo. and 6 h of TH after ROSC (n=7). All rats except the Sham group underwent asphyxia CA and were sacrificed 1 day after ROSC. The survival rate increased from 42.8% in the Normo. group to 50, 66.6 and 85.7% in the groups with 2, 4 and 6 h of TH after CA, respectively. TH attenuated the histopathological changes of the renal tissues following ROSC and the levels of blood urea nitrogen, serum creatinine and malondialdehyde in renal tissues. On immunohistochemistry, the relative optical density of nuclear erythroid-related factor-2 (Nrf2) and heme oxygenase (HO-1) expression in renal tissues increased in the Normo. group compared with that in the Sham group and exhibited further significant increases at 6 h of TH after ROSC. In conclusion, TH attenuated renal injury and increased the expression of Nrf2 and HO-1 in a TH treatment time-dependent manner.
Collapse
Affiliation(s)
- Ali Jawad
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Yeo-Jin Yoo
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jae Chol Yoon
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Weishun Tian
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Mohammad Sadikul Islam
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Eui-Yong Lee
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Ha-Young Shin
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - So Eun Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Kyunghwa Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Dongchoon Ahn
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Byung-Yong Park
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - In-Shik Kim
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Hyun-Jin Tae
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| |
Collapse
|
5
|
Islam A, Kim SE, Yoon JC, Jawad A, Tian W, Yoo YJ, Kim IS, Ahn D, Park BY, Hwang Y, Lee JH, Tae HJ, Cho JH, Kim K. Protective effects of therapeutic hypothermia on renal injury in an asphyxial cardiac arrest rat model. J Therm Biol 2020; 94:102761. [PMID: 33293002 DOI: 10.1016/j.jtherbio.2020.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Cardiac arrest (CA) is a leading cause of mortality worldwide. Most of post-resuscitation related deaths are due to post-cardiac arrest syndrome (PCAS). After cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC) leads to renal ischemia-reperfusion injury, also known as PCAS. Many studies have focused on brain and heart injuries after ROSC, but renal failure has largely been ignored. Therefore, we investigated the protective effects of therapeutic hypothermia (TH) on asphyxial CA-induced renal injury in rats. Thirty rats were randomly divided into five groups: 1) the control group (sham); 2) the normothermic CA (nor.); 3) a normothermic CA group that received TH immediately within 2 h after CPR (Hypo. 2 hrs); 4) a normothermic CA group that received TH within 4 h after CPR (Hypo. 4 hrs); and 5) a normothermia CA group that received TH within 6 h after CPR (Hypo. 6 h). One day after CPR, all rats were sacrificed. Compared with the normothermic CA group, the TH groups demonstrated significantly increased survival rate (P < 0.05); decreased serum blood urea nitrogen, creatinine, and lactate dehydrogenase levels; and lower histological damage degree and malondialdehyde concentration in their renal tissue. Terminal deoxynucleotidyl transferase dUTP nick end labeling stain revealed that the number of apoptotic cells significantly decreased after 4 h and 6 h of TH compared to the results seen in the normothermic CA group. Moreover, TH downregulated the expression of cyclooxygenase-2 in the renal cortex compared to the normothermic CA group one day after CPR. These results suggest that TH exerts anti-apoptotic, anti-inflammatory, and anti-oxidative effects immediately after ROSC that protect against renal injury.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - So Eun Kim
- Department of Emergency Medicine of Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| | - Jae Chol Yoon
- Department of Emergency Medicine of Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| | - Ali Jawad
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Yong Hwang
- Department of Emergency Medicine, School of Medicine, Wonkwang University, Iksan, 54538, South Korea.
| | - Jeong Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunghang-gun, 56015, South Korea.
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Jeong-Hwi Cho
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Kyunghwa Kim
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| |
Collapse
|
6
|
Her Y, Lee TK, Kim JD, Kim B, Sim H, Lee JC, Ahn JH, Park JH, Lee JW, Hong J, Kim SS, Won MH. Topical Application of Aronia melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020; 25:E4577. [PMID: 33036412 PMCID: PMC7582310 DOI: 10.3390/molecules25194577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Junkee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| |
Collapse
|
7
|
Moon D, Kim J. Cyclosporin A aggravates hydrogen peroxide-induced cell death in kidney proximal tubule epithelial cells. Anat Cell Biol 2019; 52:312-323. [PMID: 31598361 PMCID: PMC6773893 DOI: 10.5115/acb.18.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclosporin A (CsA) does not only exert a toxic effect on kidney parenchymal cells, but also protects them against necrotic cell death by inhibiting opening of mitochondrial permeability transition pore. However, whether CsA plays a role in hydrogen peroxide-induced kidney proximal tubular cell death is currently unclear. In the present study, treatment with CsA further increased apoptosis and necrosis in HK-2 human kidney proximal tubule epithelial cells during exposure to hydrogen peroxide. In addition, hydrogen peroxide-induced p53 activation and BH3 interacting-domain death agonist (BID) expression were higher in CsA-treated cells than those in non-treated cells, whereas hydrogen peroxide-induced activation of mitogen-activated protein kinases including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase and activation of protein kinase B were not significantly altered by treatment with CsA. In oxidant-antioxidant system, reactive oxygen species (ROS) production induced by hydrogen peroxide was further enhanced by treatment with CsA. However, expression levels of antioxidant enzymes including manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase were not altered by treatment with hydrogen peroxide or CsA. Treatment with CsA further enhanced mitochondrial membrane potential induced by exposure to hydrogen peroxide, although it did not alter endoplasmic reticulum stress based on expression of glucose-regulated protein 78 and 94. Taken together, these data suggest that CsA can aggravate hydrogen peroxide-induced cell death through p53 activation, BID expression, and ROS production.
Collapse
Affiliation(s)
- Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Korea.,Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|