1
|
Li K, Zhang X, Li J, Zheng X. Photoelectric activity of titania nanotube by dimensionality control for neural-stimulated osteoblast activation. Colloids Surf B Biointerfaces 2025; 251:114619. [PMID: 40086210 DOI: 10.1016/j.colsurfb.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Simultaneous bone and nerve regeneration is important in facilitating osseointegration. However, regeneration of neural elements is often overlooked when designing orthopedic implants. Since nerves are electroactive tissues that regulate bone formation via neuropeptide release, developing photoelectric coating material on implants is optimal for neural-stimulated osteoblast activation. In this study, three kinds of vertically oriented TiO2 nanotube (TNT) coatings with tube diameter of 60, 110 and 180 nm were fabricated on Ti implants denoting as TNT-60, TNT-110 and TNT-180, respectively. TNT-60 coating with higher oxygen-vacancy concentration and lower crystallinity displayed higher visible-light absorption capacity and transient photocurrent density. Enhanced photoelectric activity of TNT-60 was ascribed to narrowed bandgap of TiO2 and enhanced separation efficiency of photogenerated carriers. TNTs coatings under visible-light irradiation significantly improved proliferation of PC12 cells and cell differentiation in terms of neurite outgrowth and calcitonin gene-related peptide release. Among them, TNT-60 coating exerted the greatest enhancement via Ca2 + influx mechanism. Osteoblast differentiation and mineralization of MC3T3-E1 cells were significantly enhanced when cells were cultured with conditioned medium from PC12 cells cultured on the TNTs coatings with visible-light illumination. This indicated neural-stimulated osteoblast activation. Above all, photoelectric TNT coating provides a promising approach for targeting nerve activation to stimulate osteogenesis.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinwei Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jieping Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16:51. [PMID: 33436038 PMCID: PMC7805124 DOI: 10.1186/s13018-020-02177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osseointegration is the premise of the chewing function of dental implant. Nerve growth factor (NGF), as a neurotrophic factor, can induce bone healing. However, the influence of NGF-chondroitin sulfate (CS)/hydroxyapatite (HA)-coating composite implant on the osseointegration and innervations is still not entirely clear. Materials and methods NGF-CS/HA-coating composite implants were prepared using the modified biomimetic method. The characteristics of NGF-CS/HA-coating implants were determined using a scanning electron microscope. After NGF-CS/HA-coating implants were placed in the mandible of Beagle dogs, the early osseointegration and innervation in peri-implant tissues were assessed through X-ray, Micro-CT, maximal pull-out force, double fluorescence staining, toluidine blue staining, DiI neural tracer, immunohistochemistry, and RT-qPCR assays. Results NGF-CS/HA-coating composite implants were made successfully, which presented porous mesh structures with the main components (Ti and HA). Besides, we revealed that implantation of NGF-CS/HA-coating implants significantly changed the morphology of bone tissues and elevated maximum output, MAR, BIC, and nerve fiber in the mandible of Beagle dogs. Moreover, we proved that the implantation of NGF-CS/HA-coating implants also markedly upregulated the levels of NGF, osteogenesis differentiation, and neurogenic differentiation-related genes in the mandible of Beagle dogs. Conclusion Implantation of NGF-CS/HA-coating composite implants has significant induction effects on the early osseointegration and nerve regeneration of peri-implant tissues in the mandible of Beagle dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02177-5.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People's Republic of China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Wang Z, Mudalal M, Sun Y, Liu Y, Wang J, Wang Y, Sun X, Zhou Y. The Effects of Leukocyte-Platelet Rich Fibrin (L-PRF) on Suppression of the Expressions of the Pro-Inflammatory Cytokines, and Proliferation of Schwann Cell, and Neurotrophic Factors. Sci Rep 2020; 10:2421. [PMID: 32051476 PMCID: PMC7016122 DOI: 10.1038/s41598-020-59319-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022] Open
Abstract
This study evaluates the use of L-PRF as an autologous scaffold in nerve regeneration, and Schwann cells (SCs) proliferation and secretion of neurotrophic factors and its anti-inflammatory effect on SC Porphyromonas Gingivalis-Lipopolysaccharide (PG-LPS)-induced inflammatory responses in vitro. SEM was done to investigate various features of L-PRF. L-PRF-extracts was used to investigate the release of growth factors and treatment of SCs line. ELISA was applied to examine the release of IGF-1. The proliferative effect of L-PRF on SCs was assessed with CCK-8 assay. The effect of L-PRF on the mRNA and protein expression of SC neurotrophic factors were analyzed by RT-qPCR and ELISA. CCK-8 assay and RT-qPCR were used to determine the required concentration and the action time of PG-LPS before the anti-inflammatory effect of L-PRF was determined by measuring the changes in IL-1β, IL-6, and TNF-a with RT-qPCR and ELISA. There are different features in L-PRF. Fourteen days was sufficient to release adequate GF. The mRNA expressions of the pro-inflammatory cytokines were notably raised by PG-LPS in 3-hours treatment. L-PRF can increase SC proliferation, neurotrophic factors secretion, and suppress SC PG-LPS-induced inflammatory responses in vitro. L-PRF has the potential as an autologous biological additive for peripheral nerve regeneration in the event of nerve inflammation and injuries.
Collapse
Affiliation(s)
- Zhanqi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Mahmoud Mudalal
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry, The Arab American University, Jenin, 240, Palestine
| | - Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Yiping Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Jia Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Yao Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Provincial Key Laboratory of Dental Development, Jaw Remodeling and Regeneration, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Chen JC, Li LM, Gao JQ. Biomaterials for local drug delivery in central nervous system. Int J Pharm 2019; 560:92-100. [DOI: 10.1016/j.ijpharm.2019.01.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
|
5
|
Yan S, Feng L, Zhu Q, Yang W, Lan Y, Li D, Liu Y, Xue W, Guo R, Wu G. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2018; 4:3291-3303. [DOI: 10.1021/acsbiomaterials.8b00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shina Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiyu Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Lan
- Beogene Biotech (Guangzhou) Co., Ltd., Guangzhou 510663, China
| | - Dan Li
- Beogene Biotech (Guangzhou) Co., Ltd., Guangzhou 510663, China
| | - Yu Liu
- Guangzhou Chuangseed Biomedical Materials Co., Ltd., Guangzhou 510663, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Gustav mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands
| |
Collapse
|
6
|
Yao Y, Du Y, Gu X, Guang MK, Huang B, Gong P. [Local injection of exogenous nerve growth factor improves early bone maturation of implants]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:128-132. [PMID: 29779271 PMCID: PMC7030349 DOI: 10.7518/hxkq.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/30/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. METHODS The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. RESULTS The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). CONCLUSIONS NGF can shorten the period of bone maturation.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xia Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng-Kai Guang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Altuntas S, Buyukserin F, Haider A, Altinok B, Biyikli N, Aslim B. Protein-releasing conductive anodized alumina membranes for nerve-interface materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:590-598. [DOI: 10.1016/j.msec.2016.05.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/20/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
|
8
|
Qin J, Wang L, Sun Y, Sun X, Wen C, Shahmoradi M, Zhou Y. Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Int J Mol Med 2015; 37:493-500. [PMID: 26709397 DOI: 10.3892/ijmm.2015.2438] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Concentrated growth factor (CGF) is a newly generated complex that comprises a fibrin matrix incorporating growth factors and plasmatic and leukocyte cytokines. It has been widely used in bone regenerative medicine. However, the effect of CGF on peripheral nerve regeneration had not been previously investigated. The aim of the present study was to evaluate the possibility of using CGF for nerve regeneration by i) investigating the effect of CGF on the proliferation of Schwann cells (SCs) and secretion of neurotrophic factors nerve growth factor (NGF) and glial cell line‑derived neurotrophic factor (GDNF) in vitro; and ii) analyzing the effect of CGF on functional nerve recovery after nerve injury in vivo. CGF was prepared from venous blood taken from rats, and using scanning electron microscopy (SEM) we noted that it featured a fiber‑like appearance with pore size ranging from 0.1 to 1.0 µm. The soluble component of CGF was used to produce conditioned media with which to treat the Schwann cell line. A cell counting kit-8 assay and cell cycle analysis were both used to study the proliferative effect of CGF on SCs. Reverse transcription-quantitative PCR and western blot analysis demonstrated that there was an increase in the mRNA and protein expression of NGF and GDNF, both of which are markers of SC neurotrophic secretion. A model of sciatic nerve crush injury was established for the in vivo experiment, and CGF was found to increase the sciatic functional index (indicative of nerve function). We noted that CGF increased SC proliferation and secretion of neurotrophic factors in vitro, and promoted functional recovery after peripheral nerve injuries in vivo. These results suggest that CGF is a promising candidate biomaterial for peripheral nerve regeneration, and may potentially be utilized to repair nerve injuries.
Collapse
Affiliation(s)
- Jie Qin
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Wang
- Department of Very Important People, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue Sun
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaolin Sun
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chaoju Wen
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mahdi Shahmoradi
- Department of Bioengineering, School of Dentistry, The University of Sydney, NSW 2006, Australia
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|