1
|
Park KW, Kim JH, Jeong BG, Park JK, Jang HY, Oh YS, Kang KY. Increased Accumulation of Ginsenosides in Panax ginseng Sprouts Cultivated with Kelp Fermentates. PLANTS (BASEL, SWITZERLAND) 2024; 13:463. [PMID: 38337995 PMCID: PMC10856821 DOI: 10.3390/plants13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Currently, new agri-tech has been developed and adapted for the cultivation of crops using smart farming technologies, e.g., plant factories and hydroponics. Kelp (Laminaria japonica), which has a high industrial value, was considered as an alternative to chemicals for its eco-friendly and sustainably wide use in crop cultivation. In this study, a fermented kelp (FK) was developed for use in hydroponics. The FK contained various free and protein-bound amino acid compositions produced by fermenting the kelp with Saccharomyces cerevisiae. Supplementing FK as an aeroponic medium when cultivating ginseng sprouts (GSs) elevated the total phenolic and flavonoid contents. Additionally, seven ginsenosides (Rg1, Re, Rb1, Rc, Rg2, Rb2, and Rd) in GSs cultivated with FK in a smart-farm system were identified and quantified by a high-performance liquid chromatography-evaporative light scattering detector/mass spectrometry analysis. Administering FK significantly increased the ginsenosides in the GSs compared to the control group, which was cultivated with tap water. These results indicate the FK administration contributed to the increased accumulation of ginsenosides in the GSs. Overall, this study suggests that FK, which contains abundant nutrients for plant growth, can be used as a novel nutrient solution to enhance the ginsenoside content in GSs during hydroponic cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyung-Yun Kang
- R&D Team, Suncheon Research Center for Bio Health Care, Suncheon-si 57962, Republic of Korea; (K.-W.P.); (J.-H.K.); (B.-G.J.); (J.-K.P.); (H.-Y.J.); (Y.-S.O.)
| |
Collapse
|
2
|
Kim TH, Baek S, Kwon KH, Oh SE. Hierarchical Machine Learning-Based Growth Prediction Model of Panax ginseng Sprouts in a Hydroponic Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3867. [PMID: 38005764 PMCID: PMC10675594 DOI: 10.3390/plants12223867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Due to an increase in interest towards functional and health-related foods, Panax ginseng sprout has been in the spotlight since it contains a significant amount of saponins which have anti-cancer, -stress, and -diabetic effects. To increase the amount of production as well as decrease the cultivation period, sprouted ginseng is being studied to ascertain its optimal cultivation environment in hydroponics. Although there are studies on functional components, there is a lack of research on early disease prediction along with productivity improvement. In this study, the ginseng sprouts were cultivated in four different hydroponic conditions: control treatment, hydrogen-mineral treatment, Bioblock treatment, and highly concentrated nitrogen treatment. Physical properties were measured, and environmental data were acquired using sensors. Using three algorithms (artificial neural networks, support vector machines, random forest) for germination and rottenness classification, and leaf number and length of stem prediction models, we propose a hierarchical machine learning model that predicts the growth outcome of ginseng sprouts after a week. Based on the results, a regression model predicts the number of leaves and stem length during the growth process. The results of the classifier models showed an F1-score of germination classification of about 99% every week. The rottenness classification model showed an increase from an average of 83.5% to 98.9%. Predicted leaf numbers for week 1 showed an average nRMSE value of 0.27, which decreased by about 33% by week 3. The results for predicting stem length showed a higher performance compared to the regression model for predicting leaf number. These results showed that the proposed hierarchical machine learning algorithm can predict germination and rottenness in ginseng sprout using physical properties.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Seunghoon Baek
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Ki Hyun Kwon
- Digital Factory Project Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (T.H.K.); (S.B.); (K.H.K.)
| | - Seung Eel Oh
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Sadiq NB, Kwon H, Park NI, Hamayun M, Jung JH, Yang SH, Jang SW, Kabadayı SN, Kim HY, Kim YJ. The Impact of Light Wavelength and Darkness on Metabolite Profiling of Korean Ginseng: Evaluating Its Anti-Cancer Potential against MCF-7 and BV-2 Cell Lines. Int J Mol Sci 2023; 24:ijms24097768. [PMID: 37175475 PMCID: PMC10178343 DOI: 10.3390/ijms24097768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.
Collapse
Affiliation(s)
- Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyukjoon Kwon
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Je-Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Soo-Won Jang
- Korean Ginseng Company (KGC), 71 Beotkkot-gil, Daedeok-gu, Daejeon 34337, Republic of Korea
| | - Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Joo Kim
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| |
Collapse
|
4
|
Liu C, Xia R, Tang M, Liu X, Bian R, Yang L, Zheng J, Cheng K, Zhang X, Drosos M, Li L, Shan S, Joseph S, Pan G. More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars. Front Microbiol 2022; 13:1065313. [PMID: 36583057 PMCID: PMC9792985 DOI: 10.3389/fmicb.2022.1065313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
The role of biochar-microbe interaction in plant rhizosphere mediating soil-borne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng (Panax ginseng C. A. Meyer) is widely cultivated in Alfisols across Northeast China, being often stressed severely by pathogenic diseases. In this study, the topsoil of a continuously cropped ginseng farm was amended at 20 t ha-1, respectively, with manure biochar (PB), wood biochar (WB), and maize residue biochar (MB) in comparison to conventional manure compost (MC). Post-amendment changes in edaphic properties of bulk topsoil and the rhizosphere, in root growth and quality, and disease incidence were examined with field observations and physicochemical, molecular, and biochemical assays. In the 3 years following the amendment, the increases over MC in root biomass were parallel to the overall fertility improvement, being greater with MB and WB than with PB. Differently, the survival rate of ginseng plants increased insignificantly with PB but significantly with WB (14%) and MB (21%), while ginseng root quality was unchanged with WB but improved with PB (32%) and MB (56%). For the rhizosphere at harvest following 3 years of growing, the total content of phenolic acids from root exudate decreased by 56, 35, and 45% with PB, WB, and MB, respectively, over MC. For the rhizosphere microbiome, total fungal and bacterial abundance both was unchanged under WB but significantly increased under MB (by 200 and 38%), respectively, over MC. At the phyla level, abundances of arbuscular mycorrhizal and Bryobacter as potentially beneficial microbes were elevated while those of Fusarium and Ilyonectria as potentially pathogenic microbes were reduced, with WB and MB over MC. Moreover, rhizosphere fungal network complexity was enhanced insignificantly under PB but significantly under WB moderately and MB greatly, over MC. Overall, maize biochar exerted a great impact rather on rhizosphere microbial community composition and networking of functional groups, particularly fungi, and thus plant defense than on soil fertility and root growth.
Collapse
Affiliation(s)
- Cheng Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rong Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Man Tang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Li Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Marios Drosos
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Liu C, Xia R, Tang M, Chen X, Zhong B, Liu X, Bian R, Yang L, Zheng J, Cheng K, Zhang X, Drosos M, Li L, Shan S, Joseph S, Pan G. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China. HORTICULTURE RESEARCH 2022; 9:uhac108. [PMID: 35836471 PMCID: PMC9273955 DOI: 10.1093/hr/uhac108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The production of ginseng, an important Chinese medicine crop, has been increasingly challenged by soil degradation and pathogenic disease under continuous cropping in Northeast China. In a field experiment, an Alfisol garden continuously cropped with Chinese ginseng (Panax ginseng C. A. Meyer) was treated with soil amendment at 20 t ha-1 with maize (MB) and wood (WB) biochar, respectively, compared to conventional manure compost (MC). Two years after the amendment, the rooted topsoil and ginseng plants were sampled. The changes in soil fertility and health, particularly in the soil microbial community and root disease incidence, and in ginseng growth and quality were portrayed using soil physico-chemical assays, biochemical assays of extracellular enzyme activities and gene sequencing assays as well as ginsenoside assays. Topsoil fertility was improved by 23% and 39%, ginseng root biomass increased by 25% and 27%, and root quality improved by 6% and 18% with WB and MB, respectively, compared to MC. In the ginseng rhizosphere, fungal abundance increased by 96% and 384%, with a significant and insignificant increase in bacterial abundance, respectively, under WB and MB. Specifically, the abundance of Fusarium spp. was significantly reduced by 19-35%, while that of Burkholderia spp. increased by folds under biochar amendments over MC. Relevantly, there was a significant decrease in the abundance proportion of pathotrophic fungi but a great increase in that of arbuscular mycorrhizal fungi, along with an enhanced microbial community network complexity, especially fungal community complexity, under biochar amendments. Thus, biochar, particularly from maize residue, could promote ginseng quality production while enhancing soil health and ecological services, including carbon sequestration, in continuously cropped fields.
Collapse
Affiliation(s)
- Cheng Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rong Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Man Tang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xue Chen
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bin Zhong
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Li Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 28888 Xincheng Street, Changchun 130118 China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Marios Drosos
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
6
|
Lee TK, Lee JY, Cho YJ, Kim JE, Kim SY, Yoon Park JH, Yang H, Lee KW. Optimization of the extraction process of high levels of chlorogenic acid and ginsenosides from short-term hydroponic-cultured ginseng and evaluation of the extract for the prevention of atopic dermatitis. J Ginseng Res 2021; 46:367-375. [PMID: 35600782 PMCID: PMC9120778 DOI: 10.1016/j.jgr.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background Short-term hydroponic-cultured ginseng (sHCG), which is 1-year-old ginseng seedlings cultivated for 4 weeks in a hydroponic system, is a functional food item with several biological effects. However, the optimal extraction conditions for sHCG, and the bioactivity of its extracts, have not been evaluated. Methods Chlorogenic acid (CGA) and ginsenoside contents were evaluated in sHCG, white ginseng (WG), and red ginseng (RG) using high-performance liquid chromatography. Response surface methodology (RSM) was used to optimize the extraction conditions (temperature and ethanol concentration) to maximize the yield of dry matter, CGA, and four ginsenosides (Re, Rg1, Rb1, and Rd) from sHCG. The optimal extraction conditions were applied to pilot-scale production of sHCG extracts. The expression levels of tumor necrosis factor (TNF)-α/interferon (IFN)-γ-induced thymic and activation-regulated chemokines (TARC/CCL17) were measured after treatment with sHCG, WG, and RG extracts, and the effects of their bioactive compounds (CGA and four ginsenosides) on human skin keratinocytes (HaCaTs) were evaluated. Results CGA and four ginsenosides, which are bioactive compounds of sHCG, significantly inhibited TNF-α/IFN-γ-induced TARC/CCL17 expression. The optimal sHCG extraction conditions predicted by the RSM models were 80 °C and 60% ethanol (v/v). The sHCG extracts produced at the pilot scale under optimal conditions greatly alleviated TNF-α/IFN-γ-induced TARC/CCL17 production compared with WG and RG extracts. Conclusions Pesticide-free sHCG extracts, which contain high levels of CGA and the ginsenosides Re, Rg1, Rb1, and Rd as bioactive compounds, may have therapeutic potential for atopic diseases.
Collapse
|
7
|
Antioxidant, Anti-Inflammatory and Antithrombotic Effects of Ginsenoside Compound K Enriched Extract Derived from Ginseng Sprouts. Molecules 2021; 26:molecules26134102. [PMID: 34279442 PMCID: PMC8272189 DOI: 10.3390/molecules26134102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023] Open
Abstract
Partially purified ginsenoside extract (PGE) and compound K enriched extract (CKE) were prepared from ginseng sprouts, and their antioxidant, anti-inflammatory and antithrombotic effects were investigated. Compared to the 6-year-old ginseng roots, ginseng sprouts were found to have a higher content of phenolic compounds, saponin and protopanaxadiol-type ginsenoside by about 56%, 36% and 43%, respectively. PGE was prepared using a macroporous adsorption resin, and compound K(CK) was converted and enriched from the PGE by enzymatic hydrolysis with a conversion rate of 75%. PGE showed higher effects than CKE on radical scavenging activity in antioxidant assays. On the other hand, CKE reduced nitric oxide levels more effectively than PGE in RAW 264.7 cells. CKE also reduced pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6 than PGE. Tail bleeding time and volume were investigated after administration of CKE at 70–150 mg/kg/day to mice. CKE administered group showed a significant increase or increased tendency in bleeding time than the control group. Bleeding volume in the CKE group increased than the control group, but not as much as in the aspirin group. In conclusion, ginseng sprouts could be an efficient source of ginsenoside, and CKE converted from the ginsenosides showed antioxidant, anti-inflammatory and antithrombotic effects. However, it was estimated that the CKE might play an essential role in anti-inflammatory effects rather than antioxidant effects.
Collapse
|
8
|
Liu H, Gu H, Ye C, Guo C, Zhu Y, Huang H, Liu Y, He X, Yang M, Zhu S. Planting Density Affects Panax notoginseng Growth and Ginsenoside Accumulation by Balancing Primary and Secondary Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:628294. [PMID: 33936125 PMCID: PMC8086637 DOI: 10.3389/fpls.2021.628294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 05/24/2023]
Abstract
Adjusting planting density is a common agricultural practice used to achieve maximum yields. However, whether the quality of medicinal herbs can be improved by implementing appropriate planting densities is still uncertain. The medicinal crop Panax notoginseng was used to analyze the effects of planting density on growth and ginsenoside accumulation, and the possible mechanisms of these effects were revealed through metabonomics. The results showed that P. notoginseng achieved high ginsenoside accumulation at high planting densities (8 × 8 and 10 × 10 cm), while simultaneously achieved high biomass and ginsenoside accumulation at moderate planting density of 15 × 15 cm. At the moderate planting density, the primary metabolism (starch and sucrose metabolism) and secondary metabolism (the biosynthesis of phytohormone IAA and ginsenoside) of the plants were significantly enhanced. However, the strong intraspecific competition at the high planting densities resulted in stress as well as the accumulation of phytohormones (SA and JA), antioxidants (gentiobiose, oxalic acid, dehydroascorbic acid) and other stress resistance-related metabolites. Interestingly, the dry biomass and ginsenoside content were significantly lower at low densities (20 × 20 and 30 × 30 cm) with low intraspecific competition, which disturbed normal carbohydrate metabolism by upregulating galactose metabolism. In summary, an appropriate planting density was benefit for the growth and accumulation of ginsenosides in P. notoginseng by balancing primary metabolism and secondary metabolism.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Hongrui Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Song JS, Jung S, Jee S, Yoon JW, Byeon YS, Park S, Kim SB. Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source. Sci Rep 2021; 11:2924. [PMID: 33536557 PMCID: PMC7859182 DOI: 10.1038/s41598-021-82487-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) sprouts are grown to whole plants in 20 to 25 days in a soil-less cultivation system and then used as a medicinal vegetable. As a nitrogen (N) source, plasma-treated water (PTW) has been used to enhance the seed germination and seedling growth of many crops but has not been investigated for its effects on ginseng sprouts. This study established an in-situ system for N-containing water production using plasma technology and evaluated the effects of the PTW on ginseng growth and its bioactive phytochemicals compared with those of an untreated control. The PTW became weakly acidic 30 min after the air discharge at the electrodes because of the formation of nitrate (NO3‒) and nitrite (NO2‒) in the water. The NO3‒ and NO2‒ in the PTW, together with potassium ions (K+), enhanced the shoot biomass of the ginseng sprout by 26.5% compared to the untreated control. The ginseng sprout grown in the PTW had accumulated more free amino acids and ginsenosides in the sprout at 25 days after planting. Therefore, PTW can be used as a liquid N fertilizer for P. ginseng growth and phytochemical accumulation during sprouting under aeroponic conditions.
Collapse
Affiliation(s)
- Jong-Seok Song
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea.
| | - Sunkyung Jung
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Sunghoon Jee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Jung Woo Yoon
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Yong Seong Byeon
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Seong Bong Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| |
Collapse
|
10
|
Abstract
Increasing longevity, along with an aging population in Europe, has caused serious concerns about diet-related chronic diseases such as obesity, diabetes, cardiovascular diseases, and certain cancers. As recently noted during the coronavirus pandemic, regular exercise and a robust immune system complemented by adequate consumption of fruit and vegetables are recommended due to their known health benefits. Although the volume of fresh vegetable consumption in the EU is barely growing, demand for diversified, nutritious, and exotic vegetables has been increasing. Therefore, the European market for fresh Asian vegetables is expected to expand across the EU member states, and the introduction of new vegetables has enormous potential. We conducted this review to address the high number and wide range of Asian vegetable species with a commercial potential for introduction into the current European vegetable market. Many of them have not received any attention yet. Four Asian vegetables: (1) Korean ginseng sprout, (2) Korean cabbage, (3) Coastal hog fennel and (4) Japanese (Chinese or Korean) angelica tree, are further discussed. All of these vegetables possess several health benefits, are increasingly in demand, are easy to cultivate, and align with current trends of the European vegetable market, e.g., vegetables having a unique taste, higher value, are decorative and small. Introducing Asian vegetables will enhance the diversity of nutritious horticultural products in Europe, associated with all their respective consumption benefits. Future research on the Asian vegetable market within Europe is needed. In addition, experimental studies of Asian vegetables under practical conditions for their production in different European environments are required. Economic, social, and ecological aspects also ought to be considered.
Collapse
|
11
|
Efficacy of Panax ginseng Meyer Herbal Preparation HRG80 in Preventing and Mitigating Stress-Induced Failure of Cognitive Functions in Healthy Subjects: A Pilot, Randomized, Double-Blind, Placebo-Controlled Crossover Trial. Pharmaceuticals (Basel) 2020; 13:ph13040057. [PMID: 32235339 PMCID: PMC7243122 DOI: 10.3390/ph13040057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The aim of this pilot study was to compare the efficacy of hydroponically cultivated red Panax ginseng Meyer root preparation (HRG80) and traditionally harvested six-year-old white P. ginseng standard preparation (PGS) with placebo in preventing symptoms of stress. Methods: The effects of HRG80, PGS, and placebo capsules were studied in 50 tired healthy subjects in a three-arm, randomized, double-blinded, placebo-controlled crossover trial. Efficacy-outcome measures included the accuracy of processing the d2 test for cognitive functions, obtained accuracy score in a computerized memory test, and the perceived-stress (PS) score. Results: A statistically significant interaction effect between time and treatment (p < 0.0001) was observed in the attention d2 and memory tests, indicating that HRG80 treatment was more beneficial than that with a placebo. The effects of PGS were better than those of the placebo, but the difference was not statistically significant. There was significant difference between the effects of HRG80 and PGS (p < 0.0001) that were observed after single (Day 1) and repeated administrations on Days 5 and 12 of treatment. Conclusion: Overall, HRG80 treatment was significantly superior compared to that with the PGS and placebo regarding attention, memory, and PS scores after single and repeated administrations for 5 and 12 days.
Collapse
|
12
|
A short-term, hydroponic-culture of ginseng results in a significant increase in the anti-oxidative activity and bioactive components. Food Sci Biotechnol 2020; 29:1007-1012. [PMID: 32577317 PMCID: PMC7297876 DOI: 10.1007/s10068-020-00735-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Panax ginseng CA Meyer has a variety of biological effects, including antioxidant and antidiabetic activities. Ginseng requires long-term cultivation, but this can be shortened using hydroponic systems to facilitate the commercial development of ginseng as a functional food. However, the characteristics of short-term-cultured (< 30 days) hydroponic ginseng (sHCG) are unclear. We investigated the characteristics of 21-day-cultured sHCG compared 5-year-old normally cultured ginseng. The free radical-scavenging activity and total ginsenoside and phenolic contents were significantly higher in sHCG than in normally cultured ginseng. Fifteen ginsenosides were detected in sHCG, and the concentrations of most were higher in shoots than roots. These findings suggest that 21-day-cultured sHCG, due to its enhanced antioxidant activity and higher concentrations of total phenolics and ginsenosides (including Rd and Re), has potential as a functional food.
Collapse
|
13
|
Chen W, Balan P, Popovich DG. Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS. J Ginseng Res 2019; 44:552-562. [PMID: 32617035 PMCID: PMC7322743 DOI: 10.1016/j.jgr.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.
Collapse
Affiliation(s)
- Wei Chen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North, New Zealand
| | - Prabhu Balan
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North, New Zealand
| | - David G Popovich
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Eo J, Park KC. Effect of vermicompost application on root growth and ginsenoside content of Panax ginseng. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:458-463. [PMID: 30641356 DOI: 10.1016/j.jenvman.2018.12.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Vermicomposts are valuable by-products of organic wastes and can be used to improve soil environments in ginseng production. We compared the effects of food waste vermicompost (FWV), cow manure vermicompost (CMV) and paper sludge vermicompost (PSV) on several ginseng root production variables. Interactions between soil chemical properties, root growth, ginsenoside content and plant mineral content were also investigated. In the PSV treatment, the root yield increased by 40 t ha-1 compared to the untreated control. Nitrate concentration correlated negatively with root yield, and none of the vermicompost treatments differed significantly from the control in terms of root loss. Soil pH correlated positively with root weight, and total ginsenoside content did not vary among treatments, although some individual ginsenosides did differ among treatments. Root iron content correlated strongly with total ginsenoside content, and total ginsenoside content correlated negatively with root yield. Overall, our results showed that the root yield increase was not due to nutrient increase. Vermicompost was safe to use in relation to root rot disease, and it favourably elevated the pH of fields converted from rice paddies to ginseng production. Ginsenoside was not involved in defence mechanisms against root rot disease. Root iron content may have been involved in the metabolism of ginsenoside, and there was an apparent trade-off between ginsenoside content and root yield. Finally, vermicompost application altered resource allocation and soil chemical properties, which led to novel interactions between root parameters and components.
Collapse
Affiliation(s)
- Jinu Eo
- National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea.
| | - Kee-Choon Park
- National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea
| |
Collapse
|
15
|
The Effects of Environmental Factors on Ginsenoside Biosynthetic Enzyme Gene Expression and Saponin Abundance. Molecules 2018; 24:molecules24010014. [PMID: 30577538 PMCID: PMC6337439 DOI: 10.3390/molecules24010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Panax ginseng C.A. Meyer is one of the most important medicinal plants in Northeast China, and ginsenosides are the main active ingredients found in medicinal ginseng. The biosynthesis of ginsenosides is regulated by environmental factors and the expression of key enzyme genes. Therefore, in this experiment, ginseng in the leaf opened stage, the green fruit stage, the red fruit stage, and the root growth stage was used as the test material, and nine individual ginsenosides and total saponins (the sum of the individual saponins) were detected by HPLC (High Performance Liquid Chromatography). There was a trend of synergistic increase and decrease, and saponin accumulation and transfer in different tissues. The expression of key enzyme genes in nine synthetic pathways was detected by real-time PCR, and the correlation between saponin content, gene expression, and ecological factors was analyzed. Correlation analysis showed that in root tissue, PAR (Photosynthetically Active Radiation) and soil water potential had a greater impact on ginsenoside accumulation, while in leaf tissue, temperature and relative humidity had a greater impact on ginsenoside accumulation. The results provide a theoretical basis for elucidating the relationship between ecological factors and genetic factors and their impact on the quality of medicinal materials. The results also have guiding significance for realizing the quality of medicinal materials.
Collapse
|
16
|
Lee DY, Kim HG, Lee YG, Kim JH, Lee JW, Choi BR, Jang IB, Kim GS, Baek NI. Isolation and Quantification of Ginsenoside Rh23, a New Anti-Melanogenic Compound from the Leaves of Panax ginseng. Molecules 2018; 23:molecules23020267. [PMID: 29382138 PMCID: PMC6017343 DOI: 10.3390/molecules23020267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/22/2022] Open
Abstract
A new ginsenoside, named ginsenoside Rh23 (1), and 20-O-β-d-glucopyranosyl-3β,6α,12β,20β,25-pentahydroxydammar-23-ene (2) were isolated from the leaves of hydroponic Panax ginseng. Compounds were isolated by various column chromatography and their structures were determined based on spectroscopic methods, including high resolution quadrupole/time of flight mass spectrometry (HR-QTOF/MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. To determine anti-melanogenic activity, the change in the melanin content in melan-a cells treated with identified compounds was tested. Additionally, we investigated the melanin inhibitory effects of ginsenoside Rh23 on pigmentation in a zebrafish in vivo model. Compound 1 inhibited potent melanogenesis in melan-a cells with 37.0% melanogenesis inhibition at 80 µM and also presented inhibition on the body pigmentation in zebrafish model. Although compound 2 showed slightly lower inhibitory activity than compound 1, it also showed significantly decreased melanogenesis in melan-a cell and in zebrafish model. These results indicated that compounds isolated from hydroponic P. ginseng may be used as new skin whitening compound through the in vitro and in vivo systems. Furthermore, this study demonstrated the utility of MS-based compound 1 for the quantitative analysis. Ginsenoside Rh23 (1) was found at a level of 0.31 mg/g in leaves of hydroponic P. ginseng.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Hyoung-Geun Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Jin Hee Kim
- College of Herbal Bio-industry, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Jae Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - In-Bae Jang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
17
|
Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Medicinal plants are essential for improving human health, and around 75% of the population in developing countries relies mainly on herb-based medicines for health care. As the king of herb plants, ginseng has been used for nearly 5,000 years in the oriental and recently in western medicines. Among the compounds studied in ginseng plants, ginsenosides have been shown to have multiple medical effects such as anti-oxidative, anti-aging, anti-cancer, adaptogenic and other health-improving activities. Ginsenosides belong to a group of triterpene saponins (also called ginseng saponins) that are found almost exclusively in Panax species and accumulated especially in the plant roots. In this review, we update the conserved and diversified pathway/enzyme biosynthesizing ginsenosides which have been presented. Particularly, we highlight recent milestone works on functional characterization of key genes dedicated to the production of ginsenosides, and their application in engineering plants and yeast cells for large-scale production of ginsenosides.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| |
Collapse
|
18
|
Ochoa-Villarreal M, Howat S, Jang MO, Kim IS, Jin YW, Lee EK, Loake GJ. Cambial meristematic cells: a platform for the production of plant natural products. N Biotechnol 2015; 32:581-7. [PMID: 25686717 DOI: 10.1016/j.nbt.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/23/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
Plant cell culture constitutes a sustainable, controllable and environmentally friendly tool to produce natural products for the pharmaceutical, cosmetic and industrial biotechnology industries. However, there are significant obstacles to the commercial synthesis of high value chemicals from plant culture including low yields, performance instability, slow plant cell growth, industrial scale-up and downstream processing. Cambial meristematic cells constitute a platform to ameliorate many of these potential problems enabling the commercial production of high value chemicals.
Collapse
Affiliation(s)
- Marisol Ochoa-Villarreal
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3BF, UK
| | - Susan Howat
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3BF, UK
| | - Mi Ok Jang
- Unhwa Corp., Wooah-Dong, Dukjin-gu, Jeonju, South Korea
| | - Il Suk Kim
- Unhwa Corp., Wooah-Dong, Dukjin-gu, Jeonju, South Korea
| | - Young-Woo Jin
- Unhwa Corp., Wooah-Dong, Dukjin-gu, Jeonju, South Korea
| | - Eun-Kyong Lee
- Unhwa Corp., Wooah-Dong, Dukjin-gu, Jeonju, South Korea
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3BF, UK.
| |
Collapse
|
19
|
The potential of minor ginsenosides isolated from the leaves of Panax ginseng as inhibitors of melanogenesis. Int J Mol Sci 2015; 16:1677-90. [PMID: 25590297 PMCID: PMC4307327 DOI: 10.3390/ijms16011677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/31/2014] [Indexed: 11/27/2022] Open
Abstract
Three minor ginsenosides, namely, ginsenoside Rh6 (1), vina-ginsenoside R4 (2) and vina-ginsenoside R13 (3), were isolated from the leaves of hydroponic Panax ginseng. The chemical structures were determined based on spectroscopic methods, including fast atom bombardment mass spectroscopy (FAB-MS), 1D-nuclear magnetic resonance (NMR), 2D-NMR, and, infrared (IR) spectroscopy. The melanogenic inhibitory activity of compounds 1, 2 and 3 was 23.9%, 27.8% and 35.2%, respectively, at a concentration of 80 µM. Likewise, the three compounds showed inhibitory activity on body pigmentation on a zebrafish model, which is commonly used as a model for biomedical or cosmetic research. These results from in vitro and in vivo systems suggest that the three aforementioned compounds isolated from Panax ginseng may have potential as new skin whitening compounds.
Collapse
|
20
|
Glycosyl glycerides from hydroponic Panax ginseng inhibited NO production in lipopolysaccharide-stimulated RAW264.7 cells. J Ginseng Res 2014; 39:162-8. [PMID: 26045690 PMCID: PMC4452534 DOI: 10.1016/j.jgr.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Although the aerial parts of hydroponic Panax ginseng are reported to contain higher contents of total ginsenosides than those of roots, the isolation and identification of active metabolites from the aerial parts of hydroponic P. ginseng have not been carried out so far. Methods The aerial parts of hydroponic P. ginseng were applied on repeated silica gel and octadecylsilane columns to yield four glycosyl glycerides (Compounds 1–4), which were identified based on nuclear magnetic resonance, infrared, fast atom bombardment mass spectrometry, and gas chromatography/mass spectrometry data. Compounds 1–4 were evaluated for inhibition activity on NO production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results and conclusion The glycosyl glycerides were identified to be (2S)-1-O-7(Z),10(Z),13(Z)-hexadecatrienoyl-3-O-β-d-galactopyranosyl-sn-glycerol (1), (2S)-1-O-linolenoyl-3-O-β-d-galactopyranosyl-sn-glycerol (2), (2S)-1-O-linolenoyl-2-O-linolenoyl-3-O-β-d-galactopyranosyl-sn-glycerol (3), and 2(S)-1-O-linoleoyl-2-O-linoleoyl-3-O-β-d-galactopyranosyl-sn-glycerol (4). Compounds 1 and 2 showed moderate inhibition activity on NO production in LPS-stimulated RAW264.7 cells [half maximal inhibitory concentration (IC50): 63.8 ± 6.4μM and 59.4 ± 6.8μM, respectively] without cytotoxicity at concentrations < 100μM, whereas Compounds 3 and 4 showed good inhibition effect (IC50: 7.7 ± 0.6μM and 8.0 ± 0.9μM, respectively) without cytotoxicity at concentrations < 20μM. All isolated compounds showed reduced messenger RNA (mRNA) expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in LPS-induced macrophage cells with strong inhibition of mRNA activity observed for Compounds 3 and 4.
Collapse
|
21
|
Oh JY, Kim YJ, Jang MG, Joo SC, Kwon WS, Kim SY, Jung SK, Yang DC. Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 2014; 38:270-7. [PMID: 25379007 PMCID: PMC4213849 DOI: 10.1016/j.jgr.2014.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Background The effect of methyl jasmonate (MJ) on ginsenoside production in different organs of ginseng (Panax ginseng Meyer) was evaluated after the whole plant was dipped in an MJ-containing solution. MJ can induce the production of antioxidant defense genes and secondary metabolites in plants. In ginseng, MJ treatment in adventitious root resulted in the increase of dammarenediol synthase expression but a decrease of cycloartenol synthase expression, thereby enhancing ginsenoside biosynthesis. Although a previous study focused on the application of MJ to affect ginsenoside production in adventitious roots, we conducted our research on entire plants by evaluating the effect of exogenous MJ on ginsenoside production with the aim of obtaining new approaches to study ginsenoside biosynthesis response to MJ in vivo. Methods Different parts of MJ-treated ginseng plants were analyzed for ginsenoside contents (fine root, root body, epidermis, rhizome, stem, and leaf) by high-performance liquid chromatography. Results The total ginsenoside content of the ginseng root significantly increased after 2 d of MJ treatment compared with the control not subjected to MJ. Our results revealed that MJ treatment enhances ginsenoside production not in the epidermis but in the stele of the ginseng root, implying transportation of ginsenosides from the root vasculature to the epidermis. Application of MJ enhanced protopanaxadiol (PPD)-type ginsenosides, whereas chilling treatment induced protopanaxatriol (PPT)-type ginsenosides. Conclusion These findings indicate that the production of PPD-type and PPT-type ginsenosides is differently affected by abiotic and biotic stresses in the ginseng plant, and they might play different defense mechanism roles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deok-Chun Yang
- Corresponding author. Kyung Hee University, 1 Seocheon-dong, Kiheung-gu Yongin, Kyunggi-do 446-701, Korea.
| |
Collapse
|
22
|
Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 2013; 38:66-72. [PMID: 24558313 PMCID: PMC3915334 DOI: 10.1016/j.jgr.2013.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022] Open
Abstract
Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol (PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deok-Chun Yang
- Corresponding author. Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 449-701, Korea.
| |
Collapse
|