1
|
Ehrengut C, Denecke T, Meyer HJ. Benefits of Dual-Layer Spectral CT Imaging in Staging and Preoperative Evaluation of Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:6145. [PMID: 37834789 PMCID: PMC10573525 DOI: 10.3390/jcm12196145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Imaging of pancreatic malignancies is challenging but has a major impact on the patients therapeutic approach and outcome. In particular with pancreatic ductal adenocarcinoma (PDAC), usually a hypovascularized tumor, conventional CT imaging can be prone to errors in determining tumor extent and presence of metastatic disease. Dual-layer spectral detector CT (SDCT) is an emerging technique for acquiring spectral information without the need for prospective patient selection or specific protocols, with a detector capable of differentiating high- and low-energy photons to acquire full spectral images. In this review, we present the diagnostic benefits and capabilities of modern SDCT imaging with a focus on PDAC. We highlight the most useful virtual reconstructions in oncologic imaging and their benefits in staging and assessment of resectability in PDAC, including the assessment of tumor extent, vascular infiltration, and metastatic disease. We present imaging examples on a latest-generation SDCT scanner.
Collapse
Affiliation(s)
| | | | - Hans-Jonas Meyer
- Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany; (C.E.)
| |
Collapse
|
2
|
Shirasaka T, Kojima T, Yamane S, Mikayama R, Kawakubo M, Funatsu R, Kato T, Ishigami K, Funama Y. Effect of iodine concentration and body size on iodine subtraction in virtual non-contrast imaging: A phantom study. Radiography (Lond) 2023; 29:557-563. [PMID: 36965243 DOI: 10.1016/j.radi.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023]
Abstract
INTRODUCTION Dual-energy computed tomography (DECT) can generate virtual non-contrast (VNC) images. Herein, we sought to improve the accuracy of VNC images by identifying the optimal slope of contrast media (SCM) for VNC-image generation based on the iodine concentration and subject's body size. METHODS We used DECT to scan a multi-energy phantom including four iodine concentration rods (15, 10, 5, and 2 mg/mL), and 240 VNC images (eight SCM ranging from 0.49 to 0.56 × three body sizes × ten scans) that were generated by three-material decomposition. The CT number of each iodine and solid water rod part was measured in each VNC image. The difference in the CT number between the iodine and the solid water rod part was calculated and compared using paired t-test or repeated measures ANOVA. RESULTS The SCM that achieved an absolute value of the difference in CT number of <5.0 Hounsfield units (HU) for all body sizes simultaneously was greater at lower iodine concentration (SCM of 0.5, 0.51, and 0.53 at 10, 5, and 2 mg/mL iodine, respectively). At an iodine concentration of 15 mg/mL, no SCM achieved an absolute difference of <5.0 HU in CT number for all body sizes simultaneously. At all iodine concentrations, the SCM achieving the minimal difference in the CT number increased with the increase in body size. CONCLUSION By adjusting the SCM according to the iodine concentration and body size, it is possible to generate VNC images with an accuracy of <5.0 HU. IMPLICATIONS FOR PRACTICE Improving the accuracy of VNC images minimizing incomplete iodine subtraction would make it possible to replace true non-contrast (TNC) images with VNC images and reduce the radiation dose.
Collapse
Affiliation(s)
- T Shirasaka
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - T Kojima
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan; Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - S Yamane
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - R Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - M Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - R Funatsu
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - T Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - K Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | - Y Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan.
| |
Collapse
|
3
|
Kang HJ, Lee DH, Park SJ, Han JK. Virtual noncontrast images derived from dual-energy CT for assessment of hepatic steatosis in living liver donors. Eur J Radiol 2021; 139:109687. [PMID: 33836335 DOI: 10.1016/j.ejrad.2021.109687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed to investigate the correlation of attenuation between virtual noncontrast (VNC) and true noncontrast (TNC) CT images and compare the diagnostic performance for hepatic steatosis using MR spectroscopy (MRS) as the reference standard. METHODS A total of 131 consecutive hepatic donor candidates who underwent dual-source dual-energy CT and MRS within one month from January 2018 to April 2019 were included. An MRS value > 5.8 % was regarded as substantial hepatic steatosis. The correlation of attenuation between TNC and VNC in the liver and spleen, and liver attenuation index (LAI), defined as hepatic minus splenic attenuation, was evaluated using Spearman's rank correlation. The diagnostic performance of the LAI for hepatic steatosis was compared using receiver operating characteristic analyses. RESULTS Twenty-three candidates (17.6 %) had substantial hepatic steatosis. The median liver attenuation (66.7 [IQR, 63.5-70.9] vs. 63.5 [IQR, 60.3-66.9], p < .001) and LAI (12.9 [9.3-16.7] vs. 7.4 [3.9-11.9], p < .001) in the VNC were higher than those in the TNC. Hepatic attenuation (r = 0.93, p < .001), splenic attenuation (r = 0.55, p < .001), and LAI (r = 0.87, p < .001) were significantly correlated between TNC and VNC. Area under the curve of LAI in TNC and VNC were 0.88 (cutoff, LAI < 3.1) and 0.84 (cutoff, LAI < 10.1), respectively, indicating no statistically significant difference (p = 0.11). CONCLUSION The LAI of VNC is significantly correlated with that of TNC and might be feasible for diagnosing substantial hepatic steatosis in living liver donor candidates using different cutoff values of LAI.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Sae Jin Park
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
4
|
Park A, Lee YH, Seo HS. Could both intrinsic and extrinsic iodine be successfully suppressed on virtual non-contrast CT images for detecting thyroid calcification? Jpn J Radiol 2021; 39:580-588. [PMID: 33506433 DOI: 10.1007/s11604-021-01095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Although virtual non-contrast (VNC) successfully removes iodinated contrast, uncertainty exists regarding the feasibility of VNC to suppress iodine for detecting thyroid calcification. Therefore, we evaluated whether both intrinsic and extrinsic iodine attenuation were suppressed on VNC images. MATERIAL AND METHODS We enrolled 128 patients (male: female 17:111; age 48.0 ± 10.4 years) who underwent dual-layer dual-energy CT (DL-DECT) examination before their thyroid cancer surgeries. Two additional sets of VNC (VNCu, VNCc) images were retrospectively generated from their true unenhanced (TUE) and true contrast-enhanced (TCE) series. We compared CT attenuation values measured on the VNCu and VNCc images by drawing identical regions of interest encompassing thyroid parenchyma, then subjectively determined the concordance of calcification. RESULTS Although CT attenuation discrepancies between the VNCu and VNCc were significant (2.0 ± 5.7HU, p < 0.001),61.7%, 89.1%, and 100.0% of all measurements were < 5HU, < 10HU, and < 15HU. Based on Bland-Altman analysis, the limits of agreement were - 9.2HU and 13.2HU, whereas the proportional differences were small for VNC images generated from both TUE and TCE images. There was no discordance between two VNC image sets in detecting thyroid calcification. CONCLUSIONS VNC technique could be a feasible method to suppress both intrinsic and extrinsically administered iodine for detecting thyroid calcification.
Collapse
Affiliation(s)
- Arim Park
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.,Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hen Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.
| | - Hyung Suk Seo
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| |
Collapse
|