1
|
Stas EB, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Gebhardt JT. Evaluation of dietary acid-binding capacity level on nursery pig growth performance and fecal dry matter. J Anim Sci 2025; 103:skaf039. [PMID: 39935381 PMCID: PMC11952964 DOI: 10.1093/jas/skaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/09/2025] [Indexed: 02/13/2025] Open
Abstract
Two experiments were conducted to evaluate dietary acid-binding capacity-4 (ABC-4) level on weanling pig performance and fecal dry matter (DM). In both experiments, there were five pigs per pen and 12 replications per dietary treatment fed in two phases. In Exp. 1, 360 barrows, initially 5.9 kg, were allotted to one of six treatments. Five treatments were formulated with increasing ABC-4 ranging from 150 (low ABC-4) to 312 meq/kg (high ABC-4) in phase 1 and 200 (low ABC-4) to 343 meq/kg (high ABC-4) in phase 2. The low ABC-4 diet was formulated with specialty soy protein concentrate (SSPC; AX3 Digest, Protekta, Newport Beach, CA) and a combination of dietary acidifiers. Increasing ABC-4 was achieved by progressively replacing SSPC with enzymatically treated soybean meal (ESBM; HP 300, Hamlet Protein, Findlay, OH) on a standardized ileal digestible (SID) Lys basis and decreasing acidifiers. Diets were formulated to contain 100 mg/kg of Zn. For the sixth treatment, pharmacological levels of Zn from ZnO were added to the high ABC-4 diet. From day 0 to 23 and day 0 to 38, increasing ABC-4 increased then decreased (quadratic, P ≤ 0.046) ADG and ADFI. On days 10 and 17, increasing ABC-4 decreased (linear, P ≤ 0.022) fecal DM. From day 0 to 23, pigs fed the diet containing ZnO had increased (P ≤ 0.009) BW, ADG and ADFI compared to the high ABC-4 diet without ZnO. In Exp 2, 300 pigs, initially 6.0 kg, were allotted to one of five dietary treatments. Diet 1 was a low ABC-4 diet formulated to 200 and 250 meq/kg in phases 1 and 2, respectively. Two intermediate ABC-4 levels were formulated by either replacing SSPC with ESBM on a SID Lys basis (diet 2) or removing acidifiers (diet 3). Diet 4 was a high ABC-4 diet formulated by replacing SSPC and removing acidifiers to increase ABC-4. Diet 5 was diet 4 but with pharmacological levels of Zn from ZnO. Diets 1 through 4 contained 110 mg/kg of Zn. From day 0 to 24 and day 0 to 38, increasing ABC-4 decreased (linear, P ≤ 0.046) G:F. On days 10 and 24, increasing ABC-4 decreased (linear, P ≤ 0.005) fecal DM. From day 0 to 24, pigs fed the diet containing ZnO had increased (P ≤ 0.047) BW, ADG, ADFI, and G:F compared to the high ABC-4 diet without ZnO. In conclusion, an ABC-4 of 200 meq/kg from day 0 to 10 postweaning and 250 meq/kg from day 10 to 24 postweaning improves pig growth performance and fecal DM for compared to higher ABC-4 diets. In diets without ZnO, low ABC-4 diet formulation can improve the performance and fecal DM of weanling pigs.
Collapse
Affiliation(s)
- Ethan B Stas
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
2
|
Kwak MJ, Ha DJ, Park MY, Eor JY, Whang KY, Kim Y. Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:398-411. [PMID: 38628689 PMCID: PMC11016744 DOI: 10.5187/jast.2023.e90] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 04/19/2024]
Abstract
Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Dong-Jin Ha
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Min Young Park
- Department of Basic Science and
Craniofacial Biology, New York University College of
Dentistry, New York 10012, USA
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
3
|
Ryu S, Lee JJ, Mun D, Kim SR, Choe J, Song M, Kim Y. The Ingestion of Dietary Prebiotic Alternatives during Lactation Promotes Intestinal Health by Modulation of Gut Microbiota. J Microbiol Biotechnol 2022; 32:1454-1461. [PMID: 36310360 PMCID: PMC9720077 DOI: 10.4014/jmb.2208.08017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Palm kernel expeller (PKE), a by-product of palm oil extraction, contains higher amounts of fiber than corn and soybean meal, but offers low energy density, protein value, and amino acid (AA) composition, limiting its use for swine. Recently however, it was reported that dietary fiber has a positive effect on the gut microbiota of the host, and therefore it is necessary to study the effect of PKE feeding on the intestinal microbiota of swine. In this study, we investigated the effects of supplementation with PKE in lactation diets on the gut microbiota composition of lactating sows and their litters. A total of 12 sows were randomly assigned to two dietary treatment groups in a completely randomized design. The treatments were a diet based on corn-soybean meal (CON) and CON supplemented with 20% of PKE. Sow and piglet fecal samples were collected before farrowing, on days 7 and 28 (weaning) after farrowing, and on days 7 and 28 (weaning) after farrowing, respectively, to verify gut microbiota composition by pyrosequencing analysis. The beta-diversity result showed a significant difference only in weaning-stage piglets, but dietary PKE altered the gut microbiota in sows by increasing the abundance of Lactobacillus compared with CON. In piglets, dietary PKE decreased the abundance of opportunistic pathogen Proteus and increased the abundance of potentially beneficial bacteria, such as Prevotellaceae and Prevotella. Our results can be helpful in developing feeding strategies and support the beneficial effects of dietary PKE to improve the gut health of animals.
Collapse
Affiliation(s)
- Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeehwan Choe
- Major of Beef Science, Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea,Corresponding authors M.H. Song Phone: +82-42-821-7857 E-mail:
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,
Y.H. Kim Phone: +82-2-880-4808 E-mail:
| |
Collapse
|
4
|
Lee WJ, Ryu S, Kang AN, Song M, Shin M, Oh S, Kim Y. Molecular characterization of gut microbiome in weaning pigs supplemented with multi-strain probiotics using metagenomic, culturomic, and metabolomic approaches. Anim Microbiome 2022; 4:60. [PMID: 36434671 PMCID: PMC9700986 DOI: 10.1186/s42523-022-00212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Probiotics have been reported to exhibit positive effects on host health, including improved intestinal barrier function, preventing pathogenic infection, and promoting nutrient digestion efficiency. These internal changes are reflected to the fecal microbiota composition and, bacterial metabolites production. In accordance, the application of probiotics has been broadened to industrial animals, including swine, which makes people to pursue better knowledge of the correlation between changes in the fecal microbiota and metabolites. Therefore, this study evaluated the effect of multi-strain probiotics (MSP) supplementation to piglets utilizing multiomics analytical approaches including metagenomics, culturomics, and metabolomics. RESULTS Six-week-old piglets were supplemented with MSP composed of Lactobacillus isolated from the feces of healthy piglets. To examine the effect of MSP supplement, piglets of the same age were selected and divided into two groups; one with MSP supplement (MSP group) and the other one without MSP supplement (Control group). MSP feeding altered the composition of the fecal microbiota, as demonstrated by metagenomics analysis. The abundance of commensal Lactobacillus was increased by 2.39%, while Clostridium was decreased, which revealed the similar pattern to the culturomic approach. Next, we investigated the microbial metabolite profiles, specifically SCFAs using HPLC-MS/MS and others using GC-MS, respectively. MSP supplement elevated the abundance of amino acids, including valine, isoleucine and proline as well as the concentration of acetic acid. According to the correlation analyses, these alterations were found out to be crucial in energy synthesizing metabolism, such as branched-chain amino acid (BCAA) metabolism and coenzyme A biosynthesis. Furthermore, we isolated commensal Lactobacillus strains enriched by MSP supplement, and analyzed the metabolites and evaluated the functional improvement, related to tight junction from intestinal porcine enterocyte cell line (IPEC-J2). CONCLUSIONS In conclusion, MSP administration to piglets altered their fecal microbiota, by enriching commensal Lactobacillus strains. This change contributed amino acid, acetic acid, and BCAA concentrations to be increased, and energy metabolism pathway was also increased at in vivo and in vitro. These changes produced by MSP supplement suggests the correlation between the various physiological energy metabolism functions induced by health-promoting Lactobacillus and the growth performance of piglets.
Collapse
Affiliation(s)
- Woong Ji Lee
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Sangdon Ryu
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - An Na Kang
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Minho Song
- grid.254230.20000 0001 0722 6377Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134 Korea
| | - Minhye Shin
- grid.202119.90000 0001 2364 8385Department of Microbiology, College of Medicine, Inha University, Incheon, 22212 Korea
| | - Sangnam Oh
- grid.411845.d0000 0000 8598 5806Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069 Korea
| | - Younghoon Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
5
|
An Encapsulated Organic Acid and Essential Oil Mixture Improves the Intestinal Health of Weaned Piglets by Altering Intestinal Inflammation and Antioxidative Capacity. Animals (Basel) 2022; 12:ani12182426. [PMID: 36139286 PMCID: PMC9495186 DOI: 10.3390/ani12182426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of an encapsulated organic acid and essential oil mixture (OAEO) on the growth performance, immuno-antioxidant capacity and intestinal health of weaned piglets. In total, 120 weaned piglets (23 days of age; 6.96 ± 0.08 kg) were randomly allotted to four treatments (six replicates/group; five piglets/replicate): the control group (CON) was fed the basal diet (BD), the antibiotic growth promoters group (AGP) received the BD with 20 mg/kg colistin sulphate and 10 mg/kg bacitracin zinc, and OAEO1 and OAEO2 were fed the BD with 1000 mg/kg and 2000 mg/kg OAEO, respectively. The trial lasted 21 days and then one piglet per replicate was selected for sample collection. OAEO increased the average daily gain, spleen index, serum interleukin (IL)-10, immunoglobulin (Ig) G and IgA levels; serum superoxide dismutase and glutathione peroxidase (GPX) activities; and jejunal villus height (VH), VH/crypt depth, goblet cell number, and amylase and trypsin activities (p < 0.05) compared with CON but reduced the diarrhea rate, serum tumor necrosis factor (TNF)-α, malondialdehyde (MDA), and D-lactic acid contents and diamine oxidase (DAO) activity (p < 0.05). OAEO also increased the jejunal zonula occludens-1, occludin, claudin-1, mucin-2, nuclear factor erythroid 2-related factor 2 (Nrf2), GPX and IL-10 mRNA levels, GPX activity and IL-10 content (p < 0.05) compared with CON but reduced jejunal MDA, IL-1β and TNF-α contents and Toll-like receptor (TLR) 4, nuclear factor (NF)-κB and TNF-α mRNA levels (p < 0.05). In addition, AGP increased ADG, serum IgA level and GPX activity, jejunal trypsin activity and IL-10 content and mRNA level (p < 0.05) compared with CON but reduced the serum TNF-α content and DAO activity and jejunal NF-κB mRNA level (p < 0.05). Overall, OAEO as an alternative to AGP improved the growth performance, immuno-antioxidant status and gut health of weaned piglets partly via activating the Nrf2 signaling pathway and suppressing the TLR4/NF-κB signaling pathway.
Collapse
|
6
|
Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, Park KI, Song M, Kim Y. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1314-1327. [PMID: 34957446 PMCID: PMC8672252 DOI: 10.5187/jast.2021.e109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
Bacillus is characterized by the formation of spores in harsh
environments, which makes it suitable for use as a probiotic for feed because of
thermostability and high survival rate, even under long-term storage. This study
was conducted to investigate the effects of Bacillus-based
probiotics on growth performance, nutrient digestibility, intestinal morphology,
immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned
pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned
to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete
block design (block = BW and sex). The dietary treatment was either a typical
nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01%
probiotics containing a mixture of Bacillus subtilis and
Bacillus licheniformis (PRO). Fecal samples were collected
daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood,
ileal digesta, and intestinal tissue samples were collected from one pig in each
pen at the respective time points. The PRO group did not affect the feed
efficiency, but the average daily gain was significantly improved
(p < 0.05). The PRO group showed a trend of improved
crude protein digestibility (p < 0.10). The serum
transforming growth factor-β1 level tended to be higher
(p < 0.10) in the PRO group on days 7 and 14. There
was no difference in phylum level of the intestinal microbiota, but there were
differences in genus composition and proportions. However,
β-diversity analysis showed no statistical
differences between the CON and the PRO groups. Taken together,
Bacillus-based probiotics had beneficial effects on the
growth performance, immune system, and intestinal microbiota of weaned pigs,
suggesting that Bacillus can be utilized as a functional
probiotic for weaned pigs.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Myunghwan Kong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 2769, USA
| | - Jangryeol Baek
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyeong Ii Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Muniyappan M, Palanisamy T, Kim IH. Effect of microencapsulated organic acids on growth performance, nutrient digestibility, blood profile, fecal gas emission, fecal microbial, and meat-carcass grade quality of growing-finishing pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|