1
|
Sun M, Wang H, Zhu X, Zhang X, Min Y, Ge M, Jiang X, Yu W. The mechanism of egg production improvement in laying hens before and after molting revealed by transcriptome and metabolome integration. Poult Sci 2025; 104:105125. [PMID: 40315586 PMCID: PMC12098146 DOI: 10.1016/j.psj.2025.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
The objective of this research was to examine the effects and underlying mechanisms of forced molting on the laying rate of hens. A total of ninety 500-day-old laying hens were randomly assigned to three groups: a control group (CK), a starvation group (SG), and a recovery group (RG). The study evaluated follicular development in hens and measured the expression levels of antioxidant, lipid, and inflammatory factors in their serum. Additionally, transcriptomic and metabolomic analyses were performed to assess the effects of forced molting on gene expression and metabolic profiles in hens. The findings indicated that forced molting led to an increase of laying rates, a reduction in follicular closure, and a significant rise in the levels of antioxidant enzymes such as GSH, CAT, and SOD, alongside a decrease in MDA levels. Furthermore, there were significant reductions in the blood lipid levels of LDL, HDL, TC, and TG. Additionally, there were notable differences in the inflammatory markers TNF-α, IL-1, and IL-6. The transcriptomic and metabolomic data revealed that forced molting influenced the activation of the PI3K-AKT and mTOR signaling pathways, affecting fatty acid metabolism in laying hens and modulating the expression of associated genes. In conclusion, this study demonstrates that forced molting is an effective strategy for enhancing the laying rate of hens. Furthermore, it provides a valuable theoretical framework for advancing breeding practices aimed at improving egg production.
Collapse
Affiliation(s)
- Mengqing Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Pathological Anatomical Medicine and Animal Pathogenesis, Harbin 150030, PR China.
| |
Collapse
|
2
|
Shehata AI, Rasheed M, Rafiq H, Khalid N, Rafique A, Alhoshy M, Habib YJ, El Basuini MF. Multi-functional application of octacosanol as a feed additive in animal and aquaculture: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1595-1603. [PMID: 38879792 DOI: 10.1111/jpn.14002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 11/21/2024]
Abstract
Demand for sustainable animal and aquaculture production drives the exploration of novel feed additives. We highlight octacosanol, a long-chain alcohol from plant sources, as a promising multifunctional feed additive. The review comprehensively evaluates octacosanol's applications in animal and aquaculture nutrition, including its molecular properties and mechanisms of action. It elucidates how octacosanol affects lipid metabolism, energy utilization and immune modulation. Octacosanol enhances livestock growth, efficiency, carcass quality and stress resilience. We thoroughly discuss how it enhances feed utilization, disease resistance and overall performance in finfish and shellfish in aquaculture. The review also addresses the ecological and sustainability aspects of octacosanol utilization. We identify challenges and knowledge gaps in octacosanol research, prompting suggestions for future investigations. We address regulatory considerations, dosage optimization and potential interactions with other feed additives to ensure the safe and effective use of octacosanol. In conclusion, the review highlights octacosanol's potential as a versatile feed additive in the animal and aquaculture industries and urges further research to uncover its benefits and sustainability contributions, proposing a prospective research plan for this purpose. This thorough analysis is a valuable resource for researchers, nutritionists and industry professionals looking to find innovative methods to improve production practices and advance sustainable food systems.
Collapse
Affiliation(s)
- Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Majeeda Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Punjab, Pakistan
| | - Hajirah Rafiq
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Punjab, Pakistan
| | - Nimra Khalid
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Punjab, Pakistan
| | - Ayesha Rafique
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Punjab, Pakistan
| | - Mayada Alhoshy
- Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Tishk International University, Erbil, Iraq
| | - Mohammed F El Basuini
- King Salman International University, South Sinai, Egypt
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Lee SY, Lee DY, Mariano EJ, Yun SH, Lee J, Park J, Choi Y, Han D, Kim JS, Joo ST, Hur SJ. Study on the current research trends and future agenda in animal products: an Asian perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1124-1150. [PMID: 38616880 PMCID: PMC11007299 DOI: 10.5187/jast.2023.e121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 04/16/2024]
Abstract
This study aimed to analyze the leading research materials and research trends related to livestock food in Asia in recent years and propose future research agendas to ultimately contribute to the development of related livestock species. On analyzing more than 200 relevant articles, a high frequency of studies on livestock species and products with large breeding scales and vast markets was observed. Asia possesses the largest pig population and most extensive pork market, followed by that of beef, chicken, and milk; moreover, blood and egg markets have also been studied. Regarding research keywords, "meat quality" and "probiotics" were the most common, followed by "antioxidants", which have been extensively studied in the past, and "cultured meat", which has recently gained traction. The future research agenda for meat products is expected to be dominated by alternative livestock products, such as cultured and plant-derived meats; improved meat product functionality and safety; the environmental impacts of livestock farming; and animal welfare research. The future research agenda for dairy products is anticipated to include animal welfare, dairy production, probiotic-based development of high-quality functional dairy products, the development of alternative dairy products, and the advancement of lactose-free or personalized dairy products. However, determining the extent to which the various research articles' findings have been applied in real-world industry proved challenging, and research related to animal food laws and policies and consumer surveys was lacking. In addition, studies on alternatives for sustainable livestock development could not be identified. Therefore, future research may augment industrial application, and multidisciplinary research related to animal food laws and policies as well as eco-friendly livestock production should be strengthened.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Jr Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seon-Tea Joo
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|