1
|
Chen JL, Chen SN, Liu HK, Pan BB, Zhao Y, Fu X, Otting G, Su XC. Rational Design of Lanthanide-Binding Tags to Optimize Magnetic Anisotropy in Paramagnetic Protein NMR. J Am Chem Soc 2025; 147:9939-9952. [PMID: 40064860 DOI: 10.1021/jacs.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Due to their exceptional anisotropic magnetic properties, lanthanide ion (Ln3+) complexes are of great utility in many fields of chemistry, including magnetic materials, biomedical imaging, and nuclear magnetic resonance (NMR) spectroscopy. How to achieve large magnetic anisotropies in the Ln3+ complexes coordinated with open-chain ligands is still a challenge. In this study, we started from the open-chain 4PS-PyMTA ligand and assessed the magnetic anisotropy using installed Ln3+ coordinating pendants by increasing size and rigidity. This approach yielded Ln3+ complexes with increasing magnetic anisotropies. The magnetic anisotropy and conformational dynamics of these open-chain 4PS-PyMTA-based Ln3+ complexes were evaluated by NMR spectroscopy. The impact of the coordination arms on the magnetic anisotropy was further characterized by the ligand field parameters derived from europium luminescence spectra. These data show that the design strategy yielded an efficient way to enhance the conformational rigidity of the Ln3+ chelating moiety and the ligand field strength, which underpins magnetic anisotropy. The magnitudes of pseudocontact shifts and residual dipolar couplings obtained with these 4PS-PyMTA-derived tags installed on a protein rival those obtained previously with synthetically less accessible cyclen-based Ln3+ tags. Our work provides a practical strategy to open-chain Ln3+ complexes with large magnetic anisotropies and straightforward synthetic protocols.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shen-Na Chen
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Kai Liu
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Fu
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Ossadnik D, Qi M, Voss J, Keller K, Yulikov M, Godt A. A Set of Three Gd III Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths. J Org Chem 2025; 90:1847-1876. [PMID: 39854636 DOI: 10.1021/acs.joc.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Spin labels based on GdIII complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of GdIII complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful. We prepared three GdIII complexes with DO3APic, NO3Pic, and PyMTA as the basic ligand units. They cover a wide range of EPR line widths but have in common a cysteine-targeting methanethiosulfonyl (MTS) group connected to a pyridine ring, which is an intrinsic part of the ligand. The reaction with a cysteine-containing pentapeptide (0.45 mM in the peptide, pH ∼ 7) was complete within 90 s and chemoselective. The MTS group hydrolyzed with half-lives of >24, 8, 2, and 1 h at pH 5, 6, 7, and 8, respectively. The structurally related nicotinic acid-substituted disulfide (NDS) group was found to be hydrolytically much more stable. However, the MTS spin label clearly won the competition for the pentapeptide over the NDS spin label. If high reactivity is essential, MTS is clearly the better choice.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jona Voss
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Katharina Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| |
Collapse
|
3
|
Topping L, Welegedara AP, Judd M, Abdelkader EH, Cox N, Otting G, Butler SJ. A lanthanide tag for a complementary set of pseudocontact shifts. Chem Commun (Camb) 2024; 60:8458-8461. [PMID: 39040014 DOI: 10.1039/d4cc03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Pseudocontact shifts (PCS) generated by paramagnetic lanthanide ions deliver powerful restraints for protein structure analysis by NMR spectroscopy. We present a new lanthanide tag that generates different PCSs than that of a related tag, which differs in structure by a single oxygen atom. It is highly reactive towards cysteine and performs well in turn-on luminescence and in EPR spectroscopy.
Collapse
Affiliation(s)
- Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Adarshi P Welegedara
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Martyna Judd
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| |
Collapse
|
4
|
Zhu W, Yang DT, Gronenborn AM. Ligand-Capped Cobalt(II) Multiplies the Value of the Double-Histidine Motif for PCS NMR Studies. J Am Chem Soc 2023; 145:4564-4569. [PMID: 36786809 PMCID: PMC10032564 DOI: 10.1021/jacs.2c12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 02/15/2023]
Abstract
In structural studies by NMR, pseudocontact shifts (PCSs) provide both angular and distance information. For proteins, incorporation of a di-histidine (diHis) motif, coordinated to Co2+, has emerged as an important tool to measure PCS. Here, we show that using different Co(II)-chelating ligands, such as nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA), resolves the isosurface ambiguity of Co2+-diHis and yields orthogonal PCS data sets with different Δχ-tensors for the same diHis-bearing protein. Importantly, such capping ligands effectively eliminate undesired intermolecular interactions, which can be detrimental to PCS studies. Devising and employing ligand-capping strategies afford versatile and powerful means to obtain multiple orthogonal PCS data sets, significantly extending the use of the diHis motif for structural studies by NMR.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Darian T. Yang
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemistry, University of Pittsburgh,
Dietrich School of Arts and Sciences, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemistry, University of Pittsburgh,
Dietrich School of Arts and Sciences, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Mekkattu Tharayil S, Mahawaththa MC, Feintuch A, Maleckis A, Ullrich S, Morewood R, Maxwell MJ, Huber T, Nitsche C, Goldfarb D, Otting G. Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:169-182. [PMID: 37904871 PMCID: PMC10539774 DOI: 10.5194/mr-3-169-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2023]
Abstract
The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP); (ii) reaction of the cyano groups with α -cysteine, penicillamine or β -cysteine to complete the lanthanoid chelating moiety; and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb 3 + and Tm 3 + ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron-electron resonance experiments after titration with Gd 3 + ions.
Collapse
Affiliation(s)
| | - Mithun C. Mahawaththa
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael J. Maxwell
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|