1
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
2
|
Ullah W, Herzog G, Vilà N, Walcarius A. Electrografting and electropolymerization of nanoarrays of PANI filaments through silica mesochannels. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Zhou P, Yao L, Chen K, Su B. Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Crit Rev Anal Chem 2019; 50:424-444. [DOI: 10.1080/10408347.2019.1642735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Laskowski Ł, Laskowska M, Vila N, Schabikowski M, Walcarius A. Mesoporous Silica-Based Materials for Electronics-Oriented Applications. Molecules 2019; 24:molecules24132395. [PMID: 31261814 PMCID: PMC6651352 DOI: 10.3390/molecules24132395] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022] Open
Abstract
Electronics, and nanoelectronics in particular, represent one of the most promising branches of technology. The search for novel and more efficient materials seems to be natural here. Thus far, silicon-based devices have been monopolizing this domain. Indeed, it is justified since it allows for significant miniaturization of electronic elements by their densification in integrated circuits. Nevertheless, silicon has some restrictions. Since this material is applied in the bulk form, the miniaturization limit seems to be already reached. Moreover, smaller silicon-based elements (mainly processors) need much more energy and generate significantly more heat than their larger counterparts. In our opinion, the future belongs to nanostructured materials where a proper structure is obtained by means of bottom-up nanotechnology. A great example of a material utilizing nanostructuring is mesoporous silica, which, due to its outstanding properties, can find numerous applications in electronic devices. This focused review is devoted to the application of porous silica-based materials in electronics. We guide the reader through the development and most crucial findings of porous silica from its first synthesis in 1992 to the present. The article describes constant struggle of researchers to find better solutions to supercapacitors, lower the k value or redox-active hybrids while maintaining robust mechanical properties. Finally, the last section refers to ultra-modern applications of silica such as molecular artificial neural networks or super-dense magnetic memory storage.
Collapse
Affiliation(s)
- Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Neus Vila
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Mateusz Schabikowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| |
Collapse
|
5
|
Ramírez A, Gacitúa M, Ortega E, Díaz F, del Valle M. Electrochemical in situ synthesis of polypyrrole nanowires. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Vibulyaseak K, Bureekaew S, Ogawa M. Size-Controlled Synthesis of Anatase in a Mesoporous Silica, SBA-15. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13598-13603. [PMID: 29099191 DOI: 10.1021/acs.langmuir.7b03252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The preparation of anatase in the cylindrical mesopore of SBA-15 (pore size of 8 nm) was done by the impregnation of tetraisopropyl orthotitanate and its subsequent crystallization. The impregnation was done without a solvent. Hydrolysis and condensation were promoted by the HCl vapor to encapsulate a larger amount of titanium oxo species in the mesopore and to suppress the desorption of the titanium oxo species during crystallization to anatase. After the reaction, the shape of the N2 adsorption isotherm changed significantly, indicating the decrease of the Brunauer-Emmett-Teller surface area from 743 to 283 m2/g and of the pore volume from 1.27 to 0.26 cm3/g, respectively. After the crystallization to anatase, the TiO2 content in the product was estimated to be 62 mass %, filling 30% of the pore volume of SBA-15. The homogeneous distribution of titanium in the SBA-15 sample was confirmed by elemental mapping based on scanning electron microscopy/energy-dispersive X-ray spectrometry. The crystal size of the anatase was determined to be ca. 8.1 nm, which is consistent with the pore size of the used SBA-15 (8.0 nm, derived from the Barrett-Joyner-Halenda analysis of the nitrogen adsorption isotherm). The zeta potential measurements showed the absence of anatase as isolated particles or on the surface of SBA-15 particles. All of these characterizations confirmed the successful size-controlled synthesis of anatase in the mesopore of SBA-15.
Collapse
Affiliation(s)
- Kasimanat Vibulyaseak
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) , 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) , 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) , 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
7
|
Gamero-Quijano A, Karman C, Vilà N, Herzog G, Walcarius A. Vertically Aligned and Ordered One-Dimensional Mesoscale Polyaniline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4224-4234. [PMID: 28398065 DOI: 10.1021/acs.langmuir.7b00892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth of vertically aligned and ordered polyaniline nanofilaments is controlled by potentiostatic polymerization through hexagonally packed and oriented mesoporous silica films. In such small pore template (2 nm in diameter), quasi-single PANI chains are likely to be produced. From chronoamperometric experiments and using films of various thicknesses (100-200 nm) it is possible to evidence the electropolymerization transients, wherein each stage of polymerization (induction period, growth, and overgrowth of polyaniline on mesoporous silica films) is clearly identified. The advantageous effect of mesostructured silica thin films as hard templates for the generation of isolated polyaniline nanofilaments is demonstrated from enhancement of the reversibility between the conductive and the nonconductive states of polyaniline and the higher electroactive surface areas displayed for all mesoporous silica/PANI composites. The possibility to control and tailor the growth of conducting polymer nanofilaments offers numerous opportunities for applications in various fields including energy, sensors and biosensors, photovoltaics, nanophotonics, or nanoelectronics.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Cheryl Karman
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Neus Vilà
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Grégoire Herzog
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Alain Walcarius
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| |
Collapse
|
8
|
Yan F, Lin X, Su B. Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst 2016; 141:3482-95. [DOI: 10.1039/c6an00146g] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vertically-aligned mesoporous silica films were used for electrochemical sensing and molecular separation in terms of molecular size, charge and lipophilicity.
Collapse
Affiliation(s)
- Fei Yan
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Xingyu Lin
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| |
Collapse
|
9
|
Vertically Ordered Silica Mesochannel Modified Bipolar Electrode for Electrochemiluminescence Imaging Analysis. ChemElectroChem 2015. [DOI: 10.1002/celc.201500329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Mousty C, Walcarius A. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2570-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
|
12
|
|