1
|
Keshari R, Dewani M, Kaur N, Patel GK, Singh SK, Chandra P, Prasad R, Srivastava R. Lipid Nanocarriers as Precision Delivery Systems for Brain Tumors. Bioconjug Chem 2025; 36:347-366. [PMID: 39937652 DOI: 10.1021/acs.bioconjchem.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Brain tumors, particularly glioblastomas, represent the most complicated cancers to treat and manage due to their highly invasive nature and the protective barriers of the brain, including the blood-brain barrier (BBB). The efficacy of currently available treatments, viz., radiotherapy, chemotherapy, and immunotherapy, are frequently limited by major side effects, drug resistance, and restricted drug penetration into the brain. Lipid nanoparticles (LNPs) have emerged as a promising and targeted delivery system for brain tumors. Lipid nanocarriers have gained tremendous attention for brain tumor therapeutics due to multiple drug encapsulation abilities, controlled release, better biocompatibility, and ability to cross the BBB. Herein, a detailed analysis of the design, mechanisms, and therapeutic benefits of LNPs in brain tumor treatment is discussed. Moreover, we also discuss the safety issues and clinical developments of LNPs and their current and future challenges. Further, we also focused on the clinical transformation of LNPs in brain tumor therapy by eliminating side effects and engineering the LNPs to overcome the related biological barriers, which provide personalized, affordable, and low-risk treatment options.
Collapse
Affiliation(s)
- Roshan Keshari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahima Dewani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Navneet Kaur
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004
| | - Sumit Kumar Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Hutson HK, Qin G, Cai C, Nestorova GG. Comparative proteomic profiling of glioblastoma and healthy brain cell-derived extracellular vesicles reveals enrichment of cancer-associated proteins. J Proteomics 2025; 316:105418. [PMID: 40058457 DOI: 10.1016/j.jprot.2025.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Extracellular vesicles (EVs)-mediated cellular communication plays a role in cancer development and progression. This study focuses on identifying glioblastoma-specific EV protein markers through a comparative mass spectrometry bottom-up proteomic analysis of the LN-229 cell line and human neurons, astrocytes, and endothelial brain cells (HEBCs) using timsTOF Pro 2 instrument. The statistically significant upregulated proteins with fold change greater than 2 in the glioblastoma-derived EVs were clustered based on physical and functional interactions using the STRING database and analyzed using Gene Ontology enrichment. LN229-derived EVs contained an average of 2635 proteins, while human astrocytes, neurons, and HEBC encapsulated 2647, 716, and 2285 proteins, respectively. NanoParticle Tracking Analysis indicated that glioblastoma-derived EVs exhibited greater size variability compared to EVs from healthy cells. Statistical analysis identified 25 statistically significant proteins with increased levels in LN229 EVs relative to at least two healthy cell lines suggesting their potential as glioblastoma markers. Functional clustering using the STRING database and GO analysis indicated involvement in epigenetic regulation, metastasis, angiogenesis, and protein folding. Post-translational modification analysis identified a subset of 17 proteins unique to the cancer-derived EVs involved in chromatin regulation, extracellular matrix remodeling, and basement membrane organization pathways, highlighting their role in tumor progression.
Collapse
Affiliation(s)
- Hope K Hutson
- Molecular Science and Nanotechnology, Louisiana Tech University, United States
| | - Guoting Qin
- College of Optometry, University of Houston, United States
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, United States
| | | |
Collapse
|
3
|
Wei R, Xie K, Li T, Lin W, Zhao Y, Li J, Lai S, Wei X, Jiang X, Yuan Y, Yang R. Immunity/metabolism dual-regulation via an acidity-triggered bioorthogonal assembly nanoplatform enhances glioblastoma immunotherapy by targeting CXCL12/CXCR4 and adenosine-A2AR pathways. Biomaterials 2025; 319:123216. [PMID: 40037210 DOI: 10.1016/j.biomaterials.2025.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Blocking the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signal offers the potential to induce immunogenic cell death (ICD) and enhance immunotherapy of glioblastoma (GBM). However, traditional intracellular targeted delivery strategies and adenosine-mediated tumor immunosuppression limit its therapeutic efficacy. Herein, we present an acidity-triggered self-assembly nanoplatform based on bioorthogonal reaction to potentiate GBM immunotherapy through dual regulation of metabolism and immune pathways. AMD3100 (CXCR4 antagonist) and CPI-444 (adenosine 2A receptor inhibitor) were formulated into micelles, denoted as AMD@iNPDBCO and CPI@iNPN3, respectively. Upon administration, the pH-sensitive poly(2-azepane ethyl methacrylate) group of AMD@iNPDBCO responds to the acidic tumor microenvironment, exposing the DBCO moiety, resulting in highly efficient bioorthogonal reaction with azide group on CPI@iNPN3 to form large-sized aggregates, ensuring extracellular drug release. The combination of AMD3100 and CPI-444 contributes to ICD induction, dendritic cell maturation, and immunosuppressive milieu alleviation by reducing tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, leading to a robust antitumor response, thereby significantly prolonging survival in orthotopic GBM-bearing mice. Furthermore, the nanoplatform remarkably amplifies immuno-radiotherapy by potently evoking cytotoxic CD8+ T cell priming, and synergized with immune checkpoint blockade by delaying CD8+ T cell exhaustion. Our work highlights the potential of the in situ assembly nanoplatform tailored for delivery of extracellular-targeted therapeutic agents for boosting GBM immunotherapy.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Kunfeng Xie
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Tao Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Wanxian Lin
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Yandong Zhao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China
| | - Youyong Yuan
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China; Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, PR China.
| |
Collapse
|
4
|
Juarez TM, Gill JM, Minev BR, Sharma A, Kesari S. Neoadjuvant clinical trials in adults with newly diagnosed high-grade glioma: A systematic review. Crit Rev Oncol Hematol 2025; 206:104596. [PMID: 39675399 DOI: 10.1016/j.critrevonc.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND High-grade gliomas are devastating cancers that remain incurable with standard surgical resection and radiochemotherapy. Although beneficial against neoplasms, radiation lowers lymphocyte counts, weakens immune activation, and recruits suppressive myeloid cells impairing immune responses. Tumor environments treated with radiation experience long-term immunosuppression, reducing immunotherapy effectiveness and contributing to recurrence. Investigating pre-radiation treatments in newly diagnosed patients could identify active agents, assess immunotherapy impact, and enable multiomic analyses without radiation-induced confounding factors. This literature review was conducted to describe the feasibility, safety, and outcomes of postsurgical, pre-radiation clinical trials for adults with newly diagnosed high-grade glioma. METHODS A systematic review was performed of the English-language literature reporting results of clinical trials for adults with newly diagnosed high-grade glioma administered postsurgical treatment prior to radiation therapy. A search was conducted in PubMed and references cited in research and review articles were also considered. RESULTS From 1991 to 2024, 52 clinical trials were identified: 3 phase I, 38 phase II, 4 phase III, and 7 of unknown phase. Nine trials were randomized, 24 were multicenter trials, 21 investigated temozolomide-containing regimens, and 12 focused on inoperable tumors, involving a total of 2737 patients. CONCLUSION Pre-radiation neoadjuvant studies are feasible and may identify active drugs. This is particularly relevant in the era of personalized medicine with brain-penetrant drugs, targeted therapy, and immuno-oncology advancements. Investigating pre-radiation treatments in newly diagnosed high-grade glioma is a viable approach to rapidly identify active and inactive regimens while the immune system and tumor microenvironment remain intact.
Collapse
Affiliation(s)
| | | | - Boris R Minev
- Calidi Biotherapeutics, San Diego, CA, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA 92093, USA
| | - Akanksha Sharma
- Pacific Neuroscience Institute, Santa Monica, CA, USA; Department of Translational Neuroscience, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, CA, USA; Department of Translational Neuroscience, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
5
|
Eckert T, Zobaer MS, Boulos J, Alexander-Bryant A, Baker TG, Rivers C, Das A, Vandergrift WA, Martinez J, Zukas A, Lindhorst SM, Patel S, Strickland B, Rowland NC. Immune Resistance in Glioblastoma: Understanding the Barriers to ICI and CAR-T Cell Therapy. Cancers (Basel) 2025; 17:462. [PMID: 39941829 PMCID: PMC11816167 DOI: 10.3390/cancers17030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor, with fewer than 5% of patients surviving five years after diagnosis. The introduction of immune checkpoint inhibitors (ICIs), followed by chimeric antigen receptor (CAR) T-cell therapy, marked major advancements in oncology. Despite demonstrating efficacy in other blood and solid cancers, these therapies have yielded limited success in clinical trials for both newly diagnosed and recurrent GBM. A deeper understanding of GBM's resistance to immunotherapy is essential for enhancing treatment responses and translating results seen in other cancer models. OBJECTIVES In this review, we examine clinical trial outcomes involving ICIs and CAR-T for GBM patients and explore the evasive mechanisms of GBM and the tumor microenvironment. FINDINGS AND DISCUSSION Multiple clinical trials investigating ICIs in GBM have shown poor outcomes, with no significant improvement in progression-free survival (PFS) or overall survival (OS). Results from smaller case studies with CAR-T therapy have warranted further investigation. However, no large-scale trials or robust studies have yet established these immunotherapeutic approaches as definitive treatment strategies. Future research should shift focus from addressing the scarcity of functional T cells to exploiting the abundant myeloid-derived cells within the tumor microenvironment. CONCLUSIONS Translating these therapies into effective treatments for glioblastoma in humans remains a significant challenge. The highly immunosuppressive nature of GBM and its tumor microenvironment continue to hinder the success of these innovative immunotherapeutic approaches. Targeting the myeloid-derived compartment may lead to more robust and sustained immune responses.
Collapse
Affiliation(s)
- Thomas Eckert
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
| | - MS Zobaer
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Jessie Boulos
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.B.); (A.A.-B.)
| | | | - Tiffany G. Baker
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charlotte Rivers
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - William A. Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Jaime Martinez
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Alicia Zukas
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Scott M. Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sunil Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Ben Strickland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan C. Rowland
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| |
Collapse
|
6
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Najafabadi AH, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405511. [PMID: 39535474 PMCID: PMC11719323 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Department of Orthopedic Surgery, Duke University School of
Medicine, Duke University, Durham, NC 27705
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological
Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101,
India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Center of Excellence in Biomaterials and Tissue
Engineering, Middle East Technical University, Ankara, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Laboratoryfor Innovations in Micro Engineering (LiME),
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2,
Canada
- Biotechnology Center, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| |
Collapse
|
7
|
Duaa SU, Fatima E, Qureshi Z. Pamiparib, a novel intervention with anti-neoplastic activity for the treatment of glioblastoma. Am J Med Sci 2025; 369:131-132. [PMID: 38969284 DOI: 10.1016/j.amjms.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Sehar Ul Duaa
- Services Institute of Medical Sciences, Lahore, Pakistan
| | - Eeshal Fatima
- Services Institute of Medical Sciences, Lahore, Pakistan.
| | - Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, Connecticut, USA
| |
Collapse
|
8
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
9
|
Kumar M, Nassour-Caswell LC, Alrefai H, Anderson JC, Schanel TL, Hicks PH, Cardan R, Willey CD. A High-Throughput Neurosphere-Based Colony Formation Assay to Test Drug and Radiation Sensitivity of Different Patient-Derived Glioblastoma Lines. Cells 2024; 13:1995. [PMID: 39682742 PMCID: PMC11640616 DOI: 10.3390/cells13231995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The gold standard assay for radiation response is the clonogenic assay, a normalized colony formation assay (CFA) that can capture a broad range of radiation-induced cell death mechanisms. Traditionally, this assay relies on two-dimensional (2D) cell culture conditions with colonies counted by fixing and staining protocols. While some groups have converted these to three-dimensional (3D) conditions, these models still utilize 2D-like media compositions containing serum that are incompatible with stem-like cell models such as brain tumor initiating cells (BTICs) that form self-aggregating spheroids in neural stem cell media. BTICs are the preferred patient-derived model system for studying glioblastoma (GBM) as they tend to better retain molecular and phenotypic characteristics of the original tumor tissue. As such, it is important that preclinical radiation studies should be adapted to BTIC conditions. In this study, we describe a series of experimental approaches for performing CFA experiments with BTIC cultures. Our results indicate that serum-free clonogenic assays are feasible for combination drug and radiation testing and may better facilitate translatability of preclinical findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35249, USA; (M.K.); (L.C.N.-C.); (H.A.); (J.C.A.); (T.L.S.); (P.H.H.); (R.C.)
| |
Collapse
|
10
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
11
|
Keeler G, Owusu SB, Zanaty M, Petronek MS. Mitochondrial Iron Metabolism as a Potential Key Mediator of PD-L1 Thermal Regulation. Cancers (Basel) 2024; 16:3736. [PMID: 39594692 PMCID: PMC11592209 DOI: 10.3390/cancers16223736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in the U.S. with a 5-year overall survival < 5% despite an aggressive standard of care. Laser interstitial thermal therapy (LITT) is a surgical approach to treating GBM that has gained traction, providing a safe option for reducing intracranial tumor burden. LITT is believed to potentially modulate GBM immune responses; however, the biochemical mechanisms underlying the modulation of immune checkpoints in GBM cells have been poorly characterized. The present study aimed to preliminarily evaluate the effects of thermal therapy and radiation on PD-L1 modulation in vitro, as a function of IDH mutational status. U87 cells and their IDH-mutant counterpart (U87R132H), which was generated using a crispr-cas9 knock-in approach, were utilized for this preliminary evaluation. Cell heating was achieved by harvesting with trypsin centrifugation where the cell pellets were treated on a heat block for the associated time and temperature. Following thermal therapy, cells were resuspended and irradiated using a 37-Cesium irradiator at 0.6 Gy min-1. Immediately following treatment, cells were either plated as single cells to allow colonies to form, and stained with Coomassie blue to be counted approximately 10-14 days later or harvested for Western blot analysis. Cell lysates were analyzed for PD-L1 expression with respect to various iron metabolic parameters (mortalin (HSPA9), transferrin receptor, and ferritin heavy chain) using a Western blotting approach. In both U87 and U87R132H cell lines, thermal therapy showed a temperature-dependent cell-killing effect, but U87R132H cells appeared more sensitive to thermal treatment when treated at 43 °C for 10 min. Moreover, thermal therapy had minimal effects on cell responses to 2 Gy irradiation. Treatment with thermal therapy downregulated PD-L1 expression in U87R132H cells, which was associated with increased expression of the mitochondrial iron metabolic enzyme, HSPA9. Thermal therapy reversed the radiation-induced overexpression of PD-L1, transferrin receptor, and ferritin heavy chain in U87R132H cells. No effects were observed in wild-type U87 cells. Moreover, Ga(NO3)3 depleted mitochondrial iron content which, in turn, significantly enhanced the sensitivity of U87R132H cells to thermal therapy and 2 Gy irradiation and caused a significant increase in PD-L1 expression. These results suggest that thermal therapy alone can modulate the immune checkpoint PD-L1. This effect was more pronounced when thermal therapy was combined with radiation. Mechanistically, mitochondrial iron trafficking through HSPA9 may coordinate the regulation of PD-L1 in the context of thermal therapy and ionizing radiation, which can be targeted with gallium-based therapy. These novel, preliminary findings warrant further mechanistic investigations in pre-clinical models of LITT.
Collapse
Affiliation(s)
- Gizzy Keeler
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA; (G.K.)
| | - Stephenson B. Owusu
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA; (G.K.)
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242-1181, USA
| | - Michael S. Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA; (G.K.)
| |
Collapse
|
12
|
Wong CE, Chang Y, Chen PW, Huang YT, Chang YC, Chiang CH, Wang LC, Lee PH, Huang CC, Hsu HJ, Lee JS. Dendritic cell vaccine for glioblastoma: an updated meta-analysis and trial sequential analysis. J Neurooncol 2024; 170:253-263. [PMID: 39167243 DOI: 10.1007/s11060-024-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dendritic cell (DC) vaccine is an emerging immunotherapy that could potentially improve glioblastoma survival. The first phase III clinical trial of DC vaccine was recently published. This meta-analysis aims to update and reappraise existing evidence on the efficacy of DC vaccine in patients with glioblastoma. METHODS We searched PubMed, Embase, and Cochrane Library for clinical trials of DC vaccine for glioblastoma. The quality of the studies was assessed using the RoB 2.0 and ROBINS-I tools. The results of overall survival (OS) and progression-free survival (PFS) were pooled using hazard ratios (HRs) with corresponding 95% confidence intervals (CI). Summary effects were evaluated using random effects models. Trial sequential analysis (TSA) was performed. RESULTS Seven clinical trials involving 3,619 patients were included. DC vaccine plus standard care was associated with significantly improved OS (HR = 0.71; 95% CI, 0.57 - 0.88) and PFS (HR = 0.65; 95% CI, 0.43 - 0.98). In the subgroup of newly diagnosed glioblastoma, DC vaccine was associated with improved PFS (HR = 0.59; 95% CI, 0.39 - 0.90). TSA of OS showed that the cumulative z-score line for the DC vaccine crossed the benefit boundary and reached the required sample size. TSA of PFS and subgroup analysis of newly diagnosed glioblastoma showed that the required sample size was not reached. CONCLUSIONS This updated meta-analysis, which included the first phase III trial of a DC vaccine for glioblastoma, demonstrated that the DC vaccine was associated with improved OS. Moreover, TSA showed that the required sample size was reached, indicating a true-positive result. Future studies are required for patient subgroups with newly diagnosed and recurrent glioblastoma.
Collapse
Affiliation(s)
- Chia-En Wong
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Ta Huang
- Surgical Intensive Care Unit, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Liang-Chao Wang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, Tainan, 701, Taiwan.
| | - Jung-Shun Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Neurosurgery, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|
13
|
Green GBH, Cox-Holmes AN, Potier ACE, Marlow GH, McFarland BC. Modulation of the Immune Environment in Glioblastoma by the Gut Microbiota. Biomedicines 2024; 12:2429. [PMID: 39594997 PMCID: PMC11591702 DOI: 10.3390/biomedicines12112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Studies increasingly support the role of the gut microbiota in glioma development and treatment, although the exact mechanisms remain unclear. Research indicates that the gut microbiota can influence glioma progression, response to therapies, and the effectiveness of treatments like immunotherapy, with certain microbial compositions being linked to better outcomes. Additionally, the gut microbiota impacts the tumor microenvironment, affecting both tumor growth and the response to treatment. This review will explore glioma, the gut microbiota, and how their interaction shapes glioma development and therapy responses. Additionally, this review examines the influence of gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and tryptophan, on glioma development and treatment. It also explores gut microbiome signaling via pattern recognition receptors, and the role of molecular mimicry between microbial and tumor antigens in glioblastoma, and if these interactions affect glioma development and treatment.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Gillian H. Marlow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
15
|
Jazowiecka-Rakus J, Pogoda-Mieszczak K, Rahman MM, McFadden G, Sochanik A. Adipose-Derived Stem Cells as Carrier of Pro-Apoptotic Oncolytic Myxoma Virus: To Cross the Blood-Brain Barrier and Treat Murine Glioma. Int J Mol Sci 2024; 25:11225. [PMID: 39457007 PMCID: PMC11508294 DOI: 10.3390/ijms252011225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Treatment of glioblastoma is ineffective. Myx-M011L-KO/EGFP, a myxoma virus actively inducing apoptosis in BTICs linked to recurrence, offers innovative treatment. We loaded this construct into adipose-derived stem cells (ADSCs) to mitigate antiviral host responses and enable systemic delivery. The apoptotic and cytotoxic effects of the construct were studied using murine and human glioblastoma cell lines. Before implementing systemic delivery, we delivered the construct locally using ADSC to verify elimination of orthotopic murine glioma lesions. vMyx-M011L-KO/EGFP was cytotoxic to a murine cell line, preventing effective virus multiplication. In three human glioma cell lines, viral replication did occur, coupled with cell killing. The knock-out construct induced apoptotic cell death in these cultures. ADSCs infected ex vivo were shown to be sufficiently migratory to assure transfer of the therapeutic cargo to murine glioma lesions. Virus-loaded ADSCs applied to the artificial blood-brain barrier (BBB) yielded viral infection of glioma cells grown distally in the wells. Two rounds of local administration of this therapeutic platform starting 6 days post tumor implantation slowed down growth of orthotopic lesions and improved survival (total recovery < 20%). ADSCs infected ex vivo with vMyx-M011L-KO/EGFP show promise as a therapeutic tool in systemic elimination of glioma lesions.
Collapse
Affiliation(s)
- Joanna Jazowiecka-Rakus
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Kinga Pogoda-Mieszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Masmudur M. Rahman
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (M.M.R.); (G.M.)
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (M.M.R.); (G.M.)
| | - Aleksander Sochanik
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| |
Collapse
|
16
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Lyu Y, Liu C, Lin H, Song H, Zhuang Q, Hu A, Chen L, Yang H, Mao Y. Nuclear translocation of nucleotide enzyme Phosphoglucomutase 2 governs DNA damage response and anti-tumor immunity. Heliyon 2024; 10:e36415. [PMID: 39286116 PMCID: PMC11402934 DOI: 10.1016/j.heliyon.2024.e36415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Targeting nucleotide enzymes emerges as a promising avenue for impeding tumor proliferation and fortifying anti-tumor immunogenicity. The non-canonical role of nucleotide enzymes remains poorly understood. In this study, we have identified that Phosphoglucomutase 2 (PGM2) rapidly accumulates at the DNA damage site to govern the DNA damage response mediated by the phosphorylation at Serine 165 and by forming a complex with Rho-associated coiled-coil-containing protein kinase 2 (ROCK2). Silencing PGM2 in Glioblastoma Multiforme (GBM) cells heightens DNA damage in vitro and enhances the sensitivity of temozolomide (TMZ) treatment by activating anti-tumor immunity in vivo. Furthermore, we demonstrate that pharmacological inhibition of ROCK2 synergistically complements TMZ treatment and pembrolizumab (PD-L1) checkpoint immunotherapy, augmenting anti-tumor immunity. This study reveals the non-canonical role of the nucleotide enzyme PGM2 in the regulation of DNA damage response and anti-tumor immunity, with implications for the development of therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Haikun Song
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| |
Collapse
|
18
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
19
|
Lu YJ, Vayalakkara RK, Dash BS, Hu SH, Premji TP, Wu CY, Shen YJ, Chen JP. Immunomodulatory R848-Loaded Anti-PD-L1-Conjugated Reduced Graphene Oxide Quantum Dots for Photothermal Immunotherapy of Glioblastoma. Pharmaceutics 2024; 16:1064. [PMID: 39204409 PMCID: PMC11358977 DOI: 10.3390/pharmaceutics16081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To potentially shift the GBM environment from being immunosuppressive to immune-enhancing, we engineered a novel nanovehicle from reduced graphene oxide quantum dot (rGOQD), which are loaded with the immunomodulatory drug resiquimod (R848) and conjugated with an anti-PD-L1 antibody (aPD-L1). The immunomodulatory rGOQD/R8/aPDL1 nanoparticles can actively target the PD-L1 on the surface of ALTS1C1 murine glioblastoma cells and release R848 to enhance the T-cell-driven anti-tumor response. From in vitro experiments, the PD-L1-mediated intracellular uptake and the rGOQD-induced photothermal response after irradiation with near-infrared laser light led to the death of cancer cells and the release of damage-associated molecular patterns (DAMPs). The combinational effect of R848 and released DAMPs synergistically produces antigens to activate dendritic cells, which can prime T lymphocytes to infiltrate the tumor in vivo. As a result, T cells effectively target and attack the PD-L1-suppressed glioma cells and foster a robust photothermal therapy elicited anti-tumor immune response from a syngeneic mouse model of GBM with subcutaneously implanted ALTS1C1 cells.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Reesha Kakkadavath Vayalakkara
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Thejas Pandaraparambil Premji
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Chun-Yuan Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Yang-Jin Shen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
20
|
Chagas PS, Chagas HIS, Naeini SE, Bhandari B, Gouron J, Malta TM, Salles ÉL, Wang LP, Yu JC, Baban B. Network-Based Transcriptome Analysis Reveals FAM3C as a Novel Potential Biomarker for Glioblastoma. J Cell Biochem 2024; 125:e30612. [PMID: 38923575 DOI: 10.1002/jcb.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C‑coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | | | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | - Tathiane M Malta
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Lei P Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
21
|
Yavuz M, Demircan T. Exploring the potentials of S4, a selective androgen receptor modulator, in glioblastoma multiforme therapy. Toxicol Appl Pharmacol 2024; 490:117029. [PMID: 38997069 DOI: 10.1016/j.taap.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Glioblastoma multiforme (GBM) ranks among the prevalent neoplastic diseases globally, presenting challenges in therapeutic management. Traditional modalities have yielded suboptimal response rates due to its intrinsic pathological resistance. This underscores the imperative for identifying novel molecular targets to enhance therapeutic efficacy. Literature indicates a notable correlation between androgen receptor (AR) signaling and GBM pathogenesis. To mitigate the adverse effects associated with androgenic modulation of AR, scientists have pivoted towards the synthesis of non-steroidal anabolic agents, selective androgen receptor modulators (SARMs). Among these, S4, used as a supplement by the bodybuilders to efficiently grow muscle mass with favourable oral bioavailability has emerged as a candidate of interest. This investigation substantiates the anti-oncogenic potential of S4 in temozolomide-responsive and -resistant GBM cells through cellular and molecular evaluations. We observed restriction in GBM cell growth, and motility, coupled with an induction of apoptosis, reactive oxygen species (ROS) generation, and cellular senescence. S4 exposure precipitated the upregulation of genes associated with apoptosis, cell-cycle arrest, DNA damage response, and senescence, while concurrently downregulating those involved in cellular proliferation. Future research endeavours are warranted to delineate the mechanisms underpinning S4's actions, assess its antineoplastic effects in-vivo, and its ability to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Mervenur Yavuz
- Institute of Natural Sciences, Department of Molecular Biology and Genetics, Mugla Sıtkı Koçman University, Mugla, Turkey
| | - Turan Demircan
- Medical Biology Department, School of Medicine, Mugla Sıtkı Koçman University, Mugla, Turkey.
| |
Collapse
|
22
|
Webb LM, Webb MJ, Campian JL, Caron SJ, Ruff MW, Uhm JH, Sener U. A case series of osseous metastases in patients with glioblastoma. Medicine (Baltimore) 2024; 103:e38794. [PMID: 38968484 PMCID: PMC11224798 DOI: 10.1097/md.0000000000038794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.
Collapse
Affiliation(s)
| | - Mason J. Webb
- Department of Hematology/Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samantha J. Caron
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joon H. Uhm
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Johanns TM, Garfinkle EA, Miller KE, Livingstone AJ, Roberts KF, Rao Venkata LP, Dowling JL, Chicoine MR, Dacey RG, Zipfel GJ, Kim AH, Mardis ER, Dunn GP. Integrating Multisector Molecular Characterization into Personalized Peptide Vaccine Design for Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2024; 30:2729-2742. [PMID: 38639919 PMCID: PMC11215407 DOI: 10.1158/1078-0432.ccr-23-3077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Outcomes for patients with glioblastoma (GBM) remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax. PATIENTS AND METHODS In this study, we report the findings of four patients enrolled onto the NeoVax clinical trial (NCT0342209). RESULTS Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells pre- and post-NeoVax for patients 1 to 3 using IFNγ-ELISPOT assay. A statistically significant increase in IFNγ producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from patient 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells. CONCLUSIONS Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.
Collapse
Affiliation(s)
- Tanner M. Johanns
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.
- The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Elizabeth A.R. Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio.
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio.
| | | | - Kaleigh F. Roberts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Lakshmi P. Rao Venkata
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio.
| | - Joshua L. Dowling
- The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Michael R. Chicoine
- Department of Neurosurgery, University of Missouri in Columbia, Columbia, Missouri.
| | - Ralph G. Dacey
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Gregory J. Zipfel
- The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Albert H. Kim
- The Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio.
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio.
| | - Gavin P. Dunn
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
24
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
25
|
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L, Xie T. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol 2024; 15:1401967. [PMID: 38915399 PMCID: PMC11194316 DOI: 10.3389/fimmu.2024.1401967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain tumor. Unfortunately, active comprehensive treatment does not significantly prolong patient survival. With the deepening of research, it has been found that gut microbiota plays a certain role in GBM, and can directly or indirectly affect the efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The metabolites produced by gut microbiota directly affect the host's immune homeostasis, and these metabolites can affect the function and distribution of immune cells, promote or inhibit inflammatory responses, affect the phenotype, angiogenesis, inflammatory response, and immune cell infiltration of GBM cells, thereby affecting the effectiveness of ICIs. (2) Some members of the gut microbiota may reverse T cell function inhibition, increase T cell anti-tumor activity, and ultimately improve the efficacy of ICIs by targeting specific immunosuppressive metabolites and cytokines. (3) Some members of the gut microbiota directly participate in the metabolic process of drugs, which can degrade, transform, or produce metabolites, affecting the effective concentration and bioavailability of drugs. Optimizing the structure of the gut microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also regulate immune cell function and inflammatory status in the brain through gut brain axis communication, indirectly affecting the progression of GBM and the therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI therapy, researchers have begun exploring the use of fecal microbiota transplantation (FMT) to transplant healthy or optimized gut microbiota to GBM patients, in order to improve their immune status and enhance their response to ICI therapy. Preliminary studies suggest that FMT may enhance the efficacy of ICI therapy in some patients. In summary, gut microbiota plays a crucial role in regulating ICIs in GBM, and with a deeper understanding of the relationship between gut microbiota and tumor immunity, it is expected to develop more precise and effective personalized ICI therapy strategies for GBM, in order to improve patient prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Hong
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Wu
- Department of Health Management, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Eyi Ben
- Department of Oncology, Yidu People’s Hospital, Yichang, Hubei, China
| | - Shuai Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
27
|
He W, Wang N, Wang Y, Liu M, Qing Q, Su Q, Zou Y, Liu Y. Engineering Nanomedicine for Non-Viral RNA-Based Gene Therapy of Glioblastoma. Pharmaceutics 2024; 16:482. [PMID: 38675144 PMCID: PMC11054437 DOI: 10.3390/pharmaceutics16040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant tumor of the central nervous system, characterized by aggressiveness, genetic instability, heterogenesis, and unpredictable clinical behavior. Disappointing results from the current clinical therapeutic methods have fueled a search for new therapeutic targets and treatment modalities. GBM is characterized by various genetic alterations, and RNA-based gene therapy has raised particular attention in GBM therapy. Here, we review the recent advances in engineered non-viral nanocarriers for RNA drug delivery to treat GBM. Therapeutic strategies concerning the brain-targeted delivery of various RNA drugs involving siRNA, microRNA, mRNA, ASO, and short-length RNA and the therapeutical mechanisms of these drugs to tackle the challenges of chemo-/radiotherapy resistance, recurrence, and incurable stem cell-like tumor cells of GBM are herein outlined. We also highlight the progress, prospects, and remaining challenges of non-viral nanocarriers-mediated RNA-based gene therapy.
Collapse
Affiliation(s)
- Wenya He
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ningyang Wang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaping Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengyao Liu
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Qing
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qihang Su
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zou
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
29
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
30
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
31
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
32
|
Yadav G, Kulshreshtha R. Pan-cancer analyses identify MIR210HG overexpression, epigenetic regulation and oncogenic role in human tumors and its interaction with the tumor microenvironment. Life Sci 2024; 339:122438. [PMID: 38242493 DOI: 10.1016/j.lfs.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Molecular entities showing dysregulation in multiple cancers may hold great biomarker or therapeutic potential. There is accumulating evidence that highlights the dysregulation of a long non-coding RNA, MIR210HG, in various cancers and its oncogenic role. However, a comprehensive analysis of MIR210HG expression pattern, molecular mechanisms, diagnostic or prognostic significance or evaluation of its interaction with tumor microenvironment across various cancers remains unstudied. METHODS A systematic pan-cancer analysis was done using multiple public databases and bioinformatic tools to study the molecular role and clinical significance of MIR210HG. We have analyzed expression patterns, genome alteration, transcriptional and epigenetic regulation, correlation with patient survival, immune infiltrates, co-expressed genes, interacting proteins, and pathways associated with MIR210HG. RESULTS The Pan cancer expression analysis of MIR210HG through various tumor datasets demonstrated that MIR210HG is significantly upregulated in most cancers and increased with the tumor stage in a subset of them. Furthermore, prognostic analysis revealed high MIR210HG expression is associated with poor overall and disease-free survival in specific cancer types. Genetic alteration analysis showed minimal alterations in the MIR210HG locus, indicating that overexpression in cancers is not due to gene amplification. The exploration of SNPs on MIR210HG suggested possible structural changes that may affect its interactions with the miRNAs. The correlation of MIR210HG with promoter methylation was found to be significantly negative in nature in majority of cancers depicting the possible epigenetic regulation of expression of MIR210HG. Additionally, MIR210HG showed negative correlations with immune cells and thus may have strong impact on the tumor microenvironment. Functional analysis indicates its association with hypoxia, angiogenesis, metastasis, and DNA damage repair processes. MIR210HG was found to interact with several proteins and potentially regulate chromatin modifications and transcriptional regulation. CONCLUSIONS A first pan-can cancer analysis of MIR210HG highlights its transcriptional and epigenetic deregulation and oncogenic role in the majority of cancers, its correlation with tumor microenvironment factors such as hypoxia and immune infiltration, and its potential as a prognostic biomarker and therapeutic target in several cancers.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
33
|
Dusoswa SA, Verhoeff J, van Asten S, Lübbers J, van den Braber M, Peters S, Abeln S, Crommentuijn MH, Wesseling P, Vandertop WP, Twisk JWR, Würdinger T, Noske D, van Kooyk Y, Garcia-Vallejo JJ. The immunological landscape of peripheral blood in glioblastoma patients and immunological consequences of age and dexamethasone treatment. Front Immunol 2024; 15:1343484. [PMID: 38318180 PMCID: PMC10839779 DOI: 10.3389/fimmu.2024.1343484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.
Collapse
Affiliation(s)
- Sophie A. Dusoswa
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Saskia van Asten
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Marlous van den Braber
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Sophie Peters
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Sanne Abeln
- Department of Computer Science, Free University, Amsterdam, Netherlands
| | - Matheus H.W. Crommentuijn
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Pieter Wesseling
- Department of Pathology, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam and Princes Máxima Center for Pediatric Oncology, Amsterdam UMC, VU Amsterdam, Utrecht, Netherlands
| | | | - Jos W. R. Twisk
- Department of Epidemiology and Biostatistics and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - David Noske
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Jafari S, Saboori M, Ghasemi S. LINC01366 and LINC01433 in Glioblastoma Multiforme: A Potential Role at the Intersection of Inflammation and Angiogenesis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:160-170. [PMID: 39184824 PMCID: PMC11344566 DOI: 10.22088/ijmcm.bums.13.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 08/27/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive cancer with a poor prognosis. Inflammation and angiogenesis are important processes in GBM that are interrelated. In this study, bioinformatic investigations were performed to detect common and key genes in the inflammatory and angiogenesis pathways of GBM. Additionally, relevant long non-coding RNAs (lncRNAs) were recognized as important gene regulators. Consequently, real-time PCR and correlation analyses were used to investigate changes in gene and lncRNA expression levels and explain their relationship. RELA emerged as a common key gene in these biological processes. LINC01366 and LINC01433 were identified as putative RELA regulators in different metabolic pathways using computational assays. According to our findings, the expression levels of RELA, LINC01366 and LINC01433 were found to be significantly upregulated in GBM samples. Correlational studies revealed a significant positive relationship of gene expressions between LINC01366 and LINC01433, indicating that they may have a coordinated effect on GBM biology. Nevertheless, there was no significant correlation between these lncRNAs and RELA. The current study highlights the high expression of LINC01366 and LINC01433 in GBM and emphasizes the importance of studying lncRNAs as putative regulators in the pathophysiology of GBM. Further research is needed to clarify their specific functions, in particular the associated inflammatory and angiogenesis pathways.
Collapse
Affiliation(s)
- Sorush Jafari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Masih Saboori
- Department of Neurosurgery, School of Medicine Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Galicka A, Szoka Ł, Radziejewska I, Marcinkiewicz C. Effect of Dimeric Disintegrins Isolated from Vipera lebetina obtusa Venom on Glioblastoma Cellular Responses. Cancers (Basel) 2023; 15:4805. [PMID: 37835499 PMCID: PMC10572073 DOI: 10.3390/cancers15194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Integrins play a fundamental role in the migration and invasiveness of glioblastoma (GBM) cells, making them suitable targets for innovative cancer therapy. The aim of this study was to evaluate the effect of the RGD homodimeric disintegrin VLO4, isolated from Vipera lebetina obtusa venom, on the adhesion, spreading, migration, and survival of LBC3, LN18, and LN229 cell lines. This disintegrin, as a potent antagonist for α5β1 integrin, showed pro-adhesive properties for these cell lines, the highest for LN229 and the lowest for LBC3. Glioblastoma cells displayed significant differences in the spreading on the immobilized VLO4 and the natural α5β1 integrin ligand, fibronectin. Solubilized VLO4 showed different cytotoxicity and pro-apoptotic properties among tested cell lines, with the highest against LN18 and none against LN229. Moreover, VLO4 revealed an inhibitory effect on the migration of LBC3 and LN18 cell lines, in contrast to LN229 cells, which were not sensitive to this disintegrin. However, LN229 migration was impaired by VLO5, a disintegrin antagonistic to integrin α9β1, used in combination with VLO4. A possible mechanism of action of VLO4 may be related to the downregulation of α5β1 integrin subunit expression, as revealed by Western blot. VLO4 also inhibited cell proliferation and induced caspase-dependent apoptosis in LBC3 and LN18 cell lines. These results indicate that targeting α5β1 integrin by related VLO4 compounds may be useful in the development of integrin-targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Cezary Marcinkiewicz
- Department of Bioengineering, Temple University CoE, Philadelphia, PA 19406, USA
| |
Collapse
|
37
|
Jain P, Vashist S, Panjiyar BK. Navigating the Immune Challenge in Glioblastoma: Exploring Immunotherapeutic Avenues for Overcoming Immune Suppression. Cureus 2023; 15:e46089. [PMID: 37900496 PMCID: PMC10611557 DOI: 10.7759/cureus.46089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor known for its short survival time, typically 14-18 months from diagnosis to fatality. Managing GBM poses significant challenges due to factors like the formidable blood-brain barrier, the immunosuppressive conditions within GBM, and the intricacies of surgical procedures. Currently, the typical treatment for GBM combines surgical procedures, radiation therapy, and chemotherapy using temozolomide. Unfortunately, this conventional approach has not proven effective in substantially extending the lives of GBM patients. Consequently, researchers are exploring alternative methods for GBM management. One promising avenue receiving attention in recent years is immunotherapy. This approach has successfully treated cancer types like non-small cell lung cancer and blood-related malignancies. Various immunotherapeutic strategies are currently under investigation for GBM treatment, including checkpoint inhibitors, vaccines, chimeric antigen receptor (CAR) T-cell therapy, and oncolytic viruses. A comprehensive review of 26 high-quality studies conducted over the past decade, involving thorough searches of databases such as PubMed and Google Scholar, has been conducted. The findings from this review suggest that while immunotherapeutic strategies show promise, they face significant limitations and challenges in practical application for GBM treatment. The study emphasizes the importance of combining diverse approaches, customizing treatments for individual patients, and ongoing research efforts to improve GBM patients' outlook.
Collapse
Affiliation(s)
- Prateek Jain
- Internal Medicine, Maulana Azad Medical College, Delhi, IND
| | | | - Binay K Panjiyar
- Medicine, Harvard Medical School, Boston, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
38
|
Müller Fiedler A, Medeiros M, Fiedler HD. Targeted Glioblastoma Treatment via Synthesis and Functionalization of Gold Nanoparticles With De Novo-Engineered Transferrin-Like Peptides: Protocol for a Novel Method. JMIR Res Protoc 2023; 12:e49417. [PMID: 37531222 PMCID: PMC10457702 DOI: 10.2196/49417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive brain tumor with limited treatment options due to the blood-brain barrier's (BBB's) impedance and inherent resistance to chemotherapy. Gold nanoparticles (AuNPs) functionalized with transferrin-like peptides show promise in overcoming these challenges, enhancing drug delivery to the brain, and reducing chemotherapy resistance. OBJECTIVE The primary goal of this study is to establish a detailed protocol for synthesizing and stabilizing AuNPs, functionalizing them with de novo-engineered transferrin-like peptides, and conjugating them with the chemotherapeutic agent temozolomide. This strategy aims to improve drug delivery across the BBB and circumvent chemotherapy resistance. The secondary objective includes an assessment of the safety and potential for in vivo use of the synthesized nanoparticle complex. METHODS The proposal involves multiple steps with rigorous quality control of AuNP synthesis, stabilization with surfactants, and polyethylene glycol coating. The engineered transferrin-like peptides will be synthesized and attached to the AuNPs' surface, followed by the attachment of temozolomide and O6-methylguanine-DNA methyltransferase inhibitors. The resulting complex will undergo in vitro testing to assess BBB penetration, efficacy against GBM cells, and potential toxicity. RESULTS Initial preliminary experiments and simulations suggest successful synthesis and stabilization of AuNPs and effective attachment of transferrin-like peptides. We propose peptide attachment verification using Fourier transform infrared spectroscopy and surface plasmon resonance. Additionally, we will conduct pH stability tests to ensure our functionalized AuNPs retain their properties in acidic brain tumor microenvironments. CONCLUSIONS The proposed functionalization of AuNPs with de novo-engineered transferrin-like peptides represents a novel approach to GBM treatment. Our strategy opens new avenues for drug delivery across the BBB and chemotherapy resistance reduction. While we primarily focus on in vitro studies and computational modeling at this stage, successful completion will lead to further development, including in vivo studies and nanoparticle design optimization. This proposal anticipates inspiring future research and funding in neuro-oncology, presenting a potentially innovative and effective treatment option for GBM. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/49417.
Collapse
Affiliation(s)
- Augusto Müller Fiedler
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, FL, United States
| | - Michelle Medeiros
- National Institute of Science and Technology for Catalysis, Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Haidi Dalinda Fiedler
- National Institute of Science and Technology for Catalysis, Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
39
|
Caserta S, Gangemi S, Murdaca G, Allegra A. Gender Differences and miRNAs Expression in Cancer: Implications on Prognosis and Susceptibility. Int J Mol Sci 2023; 24:11544. [PMID: 37511303 PMCID: PMC10380791 DOI: 10.3390/ijms241411544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are small, noncoding molecules of about twenty-two nucleotides with crucial roles in both healthy and pathological cells. Their expression depends not only on genetic factors, but also on epigenetic mechanisms like genomic imprinting and inactivation of X chromosome in females that influence in a sex-dependent manner onset, progression, and response to therapy of different diseases like cancer. There is evidence of a correlation between miRNAs, sex, and cancer both in solid tumors and in hematological malignancies; as an example, in lymphomas, with a prevalence rate higher in men than women, miR-142 is "silenced" because of its hypermethylation by DNA methyltransferase-1 and it is blocked in its normal activity of regulating the migration of the cell. This condition corresponds in clinical practice with a more aggressive tumor. In addition, cancer treatment can have advantages from the evaluation of miRNAs expression; in fact, therapy with estrogens in hepatocellular carcinoma determines an upregulation of the oncosuppressors miR-26a, miR-92, and miR-122 and, consequently, apoptosis. The aim of this review is to present an exhaustive collection of scientific data about the possible role of sex differences on the expression of miRNAs and the mechanisms through which miRNAs influence cancerogenesis, autophagy, and apoptosis of cells from diverse types of tumors.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|