1
|
Kaplan Ö, Gökşen Tosun N. Molecular pathway of anticancer effect of next-generation HSP90 inhibitors XL-888 and Debio0932 in neuroblastoma cell line. Med Oncol 2024; 41:194. [PMID: 38958814 PMCID: PMC11222184 DOI: 10.1007/s12032-024-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Nazan Gökşen Tosun
- Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat Vocational School of Health Services, Tokat, Türkiye.
| |
Collapse
|
2
|
Djeribi M, Nagazi I, Cocetta V, Dege N, Issaoui N, Zanetti L, Carraro M, Ayed B. Synthesis of novel supramolecular selenomolybdate as anticancer agents: An experimental and DFT computational analysis. J Mol Struct 2024; 1306:137880. [DOI: 10.1016/j.molstruc.2024.137880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Sriramareddy SN, Jamakhani M, Vilanova L, Brossel H, Staumont B, Hamaidia M. Selective inhibition of DNA ligase IV provides additional efficacy to the treatment of anaplastic thyroid cancer. Front Oncol 2024; 14:1323313. [PMID: 38380364 PMCID: PMC10876873 DOI: 10.3389/fonc.2024.1323313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Background Although the incidence of anaplastic thyroid carcinoma (ATC) is low (2.5% of thyroid cancer cases), this cancer has a very poor prognosis (survival rates < 5 months) and accounts for 14-39% of deaths. Conventional therapies based on surgery in combination with radiotherapy or chemotherapy showed limited effectiveness primarily due to the robust and protective DNA damage response in thyroid cancer cells. Methods We used single-cell transcriptomic data from patients with different subtypes of thyroid cancer to study expression of genes involved in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Then, we investigated the mechanisms of DNA damage and repair in anaplastic (C643 and Hth74) and papillary (TPC-1) thyroid cancer cell lines. The effect of caffeine (inhibitor of ATM and ATR) and UCN-01 (CHK1 inhibitor) was evaluated in cell cycle progression of thyroid cancer cells after γ-radiation or doxorubicin treatment. The DNA damage response was monitored after staining of phosphorylated γ-H2AX and 53BP1. Reporter plasmids were used to determine the efficacy of double-strand DNA breaks (DSBs) repair by HR and NHEJ in thyroid cancer cells. We evaluated the combination of selective inhibition of the DNA ligase IV by SCR7 and doxorubicin on cellular apoptosis and tumor growth in xenograft murine models of anaplastic thyroid cancer. Results Single-cell RNA-Seq showed that NHEJ- and HR-related genes are expressed in ATC and PTC patients. We showed that ATC cells undergo mitosis in the presence of unrepaired DNA damage caused by γ-radiation and doxorubicin treatment. To proliferate and survive, these cells efficiently repair DNA lesions using homologous recombination (HR) and non-homologous end joining (NHEJ). The combination of SCR7 with doxorubicin, significantly increased apoptosis and impaired ATC tumor growth in a xenograft mouse model compared to doxorubicin monotherapy. Conclusion This study shows the therapeutic value of the combination of a DNA ligase IV inhibitor and DNA-damaging agents (doxorubicin and/or γ-radiation) for the treatment of anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sathya Neelature Sriramareddy
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| | - Léa Vilanova
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| | - Hélène Brossel
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| | - Bernard Staumont
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| | - Malik Hamaidia
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium
- Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
| |
Collapse
|
4
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
5
|
Nomura H, Tsuji D, Ueno S, Kojima T, Fujii S, Yano T, Daiko H, Demachi K, Itoh K, Kawasaki T. Relevance of pharmacogenetic polymorphisms with response to docetaxel, cisplatin, and 5-fluorouracil chemotherapy in esophageal cancer. Invest New Drugs 2022; 40:420-429. [PMID: 34792690 DOI: 10.1007/s10637-021-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Docetaxel, cisplatin, and 5-fluorouracil (DCF) have high response rates, but severe neutropenia is frequently observed. The occurrence of neutropenia is associated with high histological response in solid tumors, and it might be associated with tumor shrinkage after DCF therapy. This study aimed to determine the genetic polymorphisms involved in the clinical response to preoperative DCF therapy in esophageal cancer patients. METHODS We included 56 patients with measurable lesions who received preoperative DCF therapy for esophageal cancer. Twenty-one genetic polymorphisms were analyzed, and univariate logistic regression analysis was used to evaluate the association between genetic polymorphisms and tumor shrinkage. A multivariate logistic regression analysis adjusted for T category and tumor location and a univariate analysis for potential genetic factors with P values < 0.05 were performed to explore the predictive factors and to estimate odds ratios and their 95% confidence intervals. RESULTS No patient achieved a complete response, whereas 20 patients achieved a partial response, 31 patients had stable disease, and 5 patients had progressive disease. Although no association was found between pharmacokinetic-related gene polymorphisms, XRCC3 rs17997944 was extracted as the only genetic factor that affected tumor shrinkage (P = 0.033) by univariate analysis. The multivariate analysis adjusted for T category and tumor site also showed that XRCC3 rs1799794: AA was a predictive factor that affected tumor shrinkage (odds ratio, 0.243; 95% confidence interval, 0.065-0.914; P = 0.036). CONLUSIONS XRCC3 rs1799794, which is involved in homologous recombination, is a genetic factor that affects clinical responses to DCF therapy.
Collapse
Affiliation(s)
- Hisanaga Nomura
- Department of Data Science National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Daiki Tsuji
- Department of Clinical Pharmacology & Genetics, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Shohei Ueno
- Department of Clinical Pharmacology & Genetics, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Kashiwa, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Ken Demachi
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Toshikatsu Kawasaki
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
6
|
Al Kafri N, Hafizi S. Identification of signalling pathways activated by Tyro3 that promote cell survival, proliferation and invasiveness in human cancer cells. Biochem Biophys Rep 2021; 28:101111. [PMID: 34471705 PMCID: PMC8387907 DOI: 10.1016/j.bbrep.2021.101111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Tyro3 is a member of the TAM subfamily of receptor tyrosine kinases alongside Axl and MerTK, which are activated by homologous ligands Gas6 and protein S. The TAMs activate signalling pathways that mediate diverse functions including cell survival, proliferation, phagocytosis and immune regulation, and defects in TAM-dependent processes are associated with the development of human autoimmune diseases and numerous cancers. In this study, we have focused on the signalling and functional roles of Tyro3, about which much remains unknown. For this purpose, we used cultured human cancer cell lines with different levels of TAM expression to reveal the relative significance of Tyro3 amongst the TAMs. Knockdown of Tyro3 expression by siRNA in MGH-U3 cells, which express Tyro3 as sole TAM, caused a reduction in cell viability, which could not be rescued by TAM ligand, demonstrating the dependence of these cells solely on Tyro3. In contrast, the reduced viability of SCC-25 cells upon Tyro3 knockdown could be rescued by Gas6 as these cells express both Tyro3 and Axl and hence Axl expression was preserved. An increase in the fraction of Tyro3 knockdown cells in the early apoptotic phase was observed in four different cell lines each with a different TAM expression profile, revealing a broad anti-apoptotic function of Tyro3. Furthermore, in the Tyro3-dependent cells, Tyro3 depletion caused a significant increase in cells in the G0/G1 phase of the cell cycle concomitant with decreases in the G2/M and S phases. In addition, a cancer pathway gene discovery array revealed distinct sets of genes that were altered in expression in cancer cells upon Tyro3 knockdown. Together, these results have elucidated further a role of Tyro3 in promoting multiple tumour-supporting pathways in human cancer cells, which differs in extent depending on the presence of other TAMs in the same cells. Knockdown of Tyro3 expression in human cancer cells reduced cell viability. Reduced viability by Tyro3 knockdown can be rescued by Gas6 in cells also expressing Axl. Tyro3 knockdown increased the fraction of cancer cells undergoing early apoptosis. Tyro3 depletion shifted cells from G2/M and S phases of the cell cycle to G0/G1 phase. Ligand-independent Tyro3 regulates cancer-related gene sets to promote tumorigenesis.
Collapse
Affiliation(s)
- Nour Al Kafri
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
7
|
Ali R, Alabdullah M, Algethami M, Alblihy A, Miligy I, Shoqafi A, Mesquita KA, Abdel-Fatah T, Chan SYT, Chiang PW, Mongan NP, Rakha EA, Tomkinson AE, Madhusudan S. Ligase 1 is a predictor of platinum resistance and its blockade is synthetically lethal in XRCC1 deficient epithelial ovarian cancers. Theranostics 2021; 11:8350-8361. [PMID: 34373746 PMCID: PMC8344016 DOI: 10.7150/thno.51456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: The human ligases (LIG1, LIG3 and LIG4) are essential for the maintenance of genomic integrity by catalysing the formation of phosphodiester bonds between adjacent 5'-phosphoryl and 3'-hydroxyl termini at single and double strand breaks in duplex DNA molecules generated either directly by DNA damage or during replication, recombination, and DNA repair. Whether LIG1, LIG3 and LIG4 can influence ovarian cancer pathogenesis and therapeutics is largely unknown. Methods: We investigated LIG1, LIG3 and LIG4 expression in clinical cohorts of epithelial ovarian cancers [protein level (n=525) and transcriptional level (n=1075)] and correlated to clinicopathological features and survival outcomes. Pre-clinically, platinum sensitivity was investigated in LIG1 depleted ovarian cancer cells. A small molecule inhibitor of LIG1 (L82) was tested for synthetic lethality application in XRCC1, BRCA2 or ATM deficient cancer cells. Results: LIG1 and LIG3 overexpression linked with aggressive phenotypes, platinum resistance and poor progression free survival (PFS). In contrast, LIG4 deficiency was associated with platinum resistance and worse PFS. In a multivariate analysis, LIG1 was independently associated with adverse outcome. In ovarian cancer cell lines, LIG1 depletion increased platinum cytotoxicity. L82 monotherapy was synthetically lethal in XRCC1 deficient ovarian cancer cells and 3D-spheroids. Increased cytotoxicity was linked with accumulation of DNA double strand breaks (DSBs), S-phase cell cycle arrest and increased apoptotic cells. L82 was also selectively toxic in BRCA2 deficient or ATM deficient cancer cells and 3D-spheroids. Conclusions: We provide evidence that LIG1 is an attractive target for personalization of ovarian cancer therapy.
Collapse
Affiliation(s)
- Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Muslim Alabdullah
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh 11461, Saudi Arabia
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Katia A. Mesquita
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Stephen YT Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Pei Wen Chiang
- Department of Obstetrics & Gynaecology, Queens Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51PB, UK
| | - Alan E Tomkinson
- Department of Internal Medicine, Division of Molecular Medicine, Health Sciences Center, The University of New Mexico, Albuquerque, NM 87102, USA
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| |
Collapse
|
8
|
Abstract
Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
10
|
Tavares V, Pinto R, Assis J, Pereira D, Medeiros R. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer 2020; 1873:188331. [DOI: 10.1016/j.bbcan.2019.188331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
|
11
|
Hearn JM, Hughes GM, Romero-Canelón I, Munro AF, Rubio-Ruiz B, Liu Z, Carragher NO, Sadler PJ. Pharmaco-genomic investigations of organo-iridium anticancer complexes reveal novel mechanism of action. Metallomics 2019; 10:93-107. [PMID: 29131211 DOI: 10.1039/c7mt00242d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resistance to platinum drugs (used in >50% of cancer chemotherapies) is a clinical problem. Other precious metal complexes with distinct mechanisms of action might overcome this. Half-sandwich organometallic complexes containing arene or cyclopentadienyl (Cp) ligands show promise. We screened two iridium(iii) complexes [Ir(CpXbiph)(ppy)Cl] (ZL49, 1, ppy = phenylpyridine) and [Ir(CpXph)(azpyNMe2)Cl]PF6 (ZL109, 2, azpyNMe2 = N,N-dimethylphenylazopyridine) in 916 cancer cell lines from 28 tissue types. On average, complex 2 was 78× more potent than 1, 36× more active than cisplatin (CDDP), and strongly active (nanomolar) in patient-derived ovarian cancer cell lines. RNA sequencing of A2780 ovarian cells revealed upregulation of antioxidant responses (NRF2, AP-1) consistent with observed induction of reactive oxygen species (ROS). Protein microarrays, high content imaging and cell cycle analysis showed S/G2 arrest, and late-stage DNA damage response without p53 requirement. The triple-negative breast cancer cell line OCUB-M was highly sensitive to 2 as were cell lines with KIT mutations. Complex 2 exhibits a markedly different pattern of antiproliferative activity compared to the 253 drugs in the Sanger Cancer Genome database, but is most similar to osmium(ii) arene complexes which share the same azopyridine ligand. Redox modulation and DNA damage can provide a multi-targeting strategy, allowing compounds such as 2 to overcome cellular resistance to platinum anticancer drugs.
Collapse
|
12
|
Dragulska SA, Chen Y, Wlodarczyk MT, Poursharifi M, Dottino P, Ulijn RV, Martignetti JA, Mieszawska AJ. Tripeptide-Stabilized Oil-in-Water Nanoemulsion of an Oleic Acids-Platinum(II) Conjugate as an Anticancer Nanomedicine. Bioconjug Chem 2018; 29:2514-2519. [PMID: 30001618 DOI: 10.1021/acs.bioconjchem.8b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a nanoemulsion (NE) which is stabilized by self-assembling tripeptide lysine-tyrosine-phenylalanine (KYF) and encapsulates an oleic acids-platinum conjugate formed using simple Pt (II) coordination chemistry. The KYF-Pt-NE is evaluated both in cultured ovarian cancer cells and in an in vivo preclinical cancer model and shows pH dependent Pt (II) release, which is low at physiological pH and enhanced at tumoral pH. The biological activity of KYF-Pt-NE, evaluated in multiple ovarian cancer cell lines, is significantly higher when compared to the analogous Pt (II) complex used in the clinic. Concurrently, the KYF-Pt-NE platform shows good compatibility with the immune system. Preliminary in vivo testing of KYF-Pt-NE with tumor bearing mice indicates efficient Pt (II) delivery to the tumor. Together, these results demonstrate the potential of peptide-stabilized nanoemulsions, specifically KYF-Pt-NE as an effective nanomedicine against cancer.
Collapse
Affiliation(s)
- Sylwia A Dragulska
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | | | - Marek T Wlodarczyk
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Mina Poursharifi
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Rein V Ulijn
- Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Chemistry , Hunter College, The City University of New York , 695 Park Avenue , New York , New York 10065 , United States.,Advanced Science Research Center (ASRC) , The Graduate Center of the City University of New York , 85 St. Nicolas Terrace , New York , New York 10031 , United States
| | - John A Martignetti
- Rudy L. Ruggles Research Institute , Western Connecticut Health Network , 131 West Street , Danbury , Connecticut 06810 , United States
| | - Aneta J Mieszawska
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
13
|
DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018; 11:50. [PMID: 29925418 PMCID: PMC6011341 DOI: 10.1186/s13048-018-0424-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications. A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents. Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
|
14
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
15
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
16
|
Studies of lncRNAs in DNA double strand break repair: what is new? Oncotarget 2017; 8:102690-102704. [PMID: 29254281 PMCID: PMC5731991 DOI: 10.18632/oncotarget.22090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023] Open
Abstract
The ‘junk DNA’ that has haunted human genetics for a long time now turns out to hold enormous hidden treasures. As species had their genomes and transcriptomes sequenced, there are an overwhelming number of lncRNA transcripts being reported, however, less than 100 of them have been functionally characterized. DNA damage is recognized and quickly repaired by the cell, with increased expression of numerous genes involved in DNA repair. Most of the time the studies have focused only on proteins involved in these signaling pathways. However, recent studies have implied that lncRNAs can be broadly induced by DNA damage and regulate DNA repair processes by various mechanisms. In this paper, we focus on recent advances in the identification and functional characterization of novel lncRNAs participating in DNA double strand break repair.
Collapse
|
17
|
Assis J, Pereira C, Nogueira A, Pereira D, Carreira R, Medeiros R. Genetic variants as ovarian cancer first-line treatment hallmarks: A systematic review and meta-analysis. Cancer Treat Rev 2017; 61:35-52. [PMID: 29100168 DOI: 10.1016/j.ctrv.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND The potential predictive value of genetic polymorphisms in ovarian cancer first-line treatment is inconsistently reported. We aimed to review ovarian cancer pharmacogenetic studies to update and summarize the available data and to provide directions for further research. METHODS A systematic review followed by a meta-analysis was conducted on cohort studies assessing the involvement of genetic polymorphisms in ovarian cancer first-line treatment response retrieved through a MEDLINE database search by November 2016. Studies were pooled and summary estimates and 95% confidence intervals (CI) were calculated using random or fixed-effects models as appropriate. RESULTS One hundred and forty-two studies gathering 106871 patients were included. Combined data suggested that GSTM1-null genotype patients have a lower risk of death compared to GSTM1-wt carriers, specifically in advanced stages (hazard ratio (HR), 0.68; 95% CI, 0.48-0.97) and when submitted to platinum-based chemotherapy (aHR, 0.61; 95% CI, 0.39-0.94). ERCC1 rs11615 and rs3212886 might have also a significant impact in treatment outcome (aHR, 0.67; 95% CI, 0.51-0.89; aHR, 1.28; 95% CI, 1.01-1.63, respectively). Moreover, ERCC2 rs13181 and rs1799793 showed a distinct ethnic behavior (Asians: aHR, 1.41; 95% CI, 0.80-2.49; aHR, 1.07; 95% CI, 0.62-1.86; Caucasians: aHR, 0.10; 95% CI, 0.01-0.96; aHR, 0.18; 95% CI, 0.05-0.68, respectively). CONCLUSION(S) The definition of integrative predictive models should encompass genetic information, especially regarding GSTM1 homozygous deletion. Justifying additional pharmacogenetic investigation are variants in ERCC1 and ERCC2, which highlight the DNA Repair ability to ovarian cancer prognosis. Further knowledge could aid to understand platinum-treatment failure and to tailor chemotherapy strategies.
Collapse
Affiliation(s)
- Joana Assis
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; CINTESIS, Center for Health Technology and Services Research, FMUP, Porto, Portugal
| | - Augusto Nogueira
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| | - Rafael Carreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal; SilicoLife, Lda, Braga, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal; CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal.
| |
Collapse
|
18
|
Rosinha A, Assis J, Dias F, Nogueira A, Pereira D, Maurício J, Teixeira AL, Medeiros R. DNA repair system and renal cell carcinoma prognosis: under the influence of NBS1. Med Oncol 2015; 32:255. [PMID: 26493193 DOI: 10.1007/s12032-015-0701-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
Abstract
Nibrin (NBS1) is a protein involved in the maintenance of genomic stability and in DNA repair mechanisms. The NBS1 E185Q polymorphism (rs1805794) has been investigated in several studies, including its influence in the pathogenesis of renal cell carcinoma (RCC), although its prognostic value is still not determined for these patients. The purpose of the present work was to determine the role of NBS1 E185Q polymorphism as a prognostic factor/genetic marker of survival in patients with RCC. We conducted a hospital-based study analyzing 172 caucasian patients with histopathological diagnosis of RCC, for which polymorphism genotyping was performed by TaqMan(®) Allelic Discrimination methodology. In this study, we have found that male patients, non-metastatic at diagnosis and NBS1 C allele carriers (GC/CC) showed a lower 5-years survival when compared with GG genotype patients (P = 0.045). Furthermore, for carriers of low-activity NBS1 C allele, multivariate Cox regression analysis revealed almost a fourfold increase in risk of death at 5 years, after adjustment for age, histological type, Fuhrman's grade, tumor size and vascular permeation (HR 3.92; 95 % CI 1.33-11.57; P = 0.013). There were no statistically significant differences between the NBS1 E185Q genotypes and the assessed patients' clinical-pathological characteristics. Our results demonstrate for the first time the impact of NBS1 E185Q polymorphism in RCC prognosis suggesting that, for RCC male patients non-metastatic at diagnosis, this polymorphism might be a putative genetic marker in the clinical outcome.
Collapse
Affiliation(s)
- Alina Rosinha
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal.,Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - Joana Assis
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal.,FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Augusto Nogueira
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal.,FMUP, Faculty of Medicine of Porto University, Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal.,Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, Porto, Portugal
| | - Joaquina Maurício
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| | - Ana Luísa Teixeira
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal. .,ICBAS, Abel Salazar Institute for the Biomedical Sciences, Porto, Portugal. .,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal. .,Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal. .,IPO Porto, R Ant Bernardino de Almeida, 4200-072, Porto, Portugal.
| |
Collapse
|
19
|
Liu J, Li J, Zhang JF, Xin XY. Combination of fenretinide and selenite inhibits proliferation and induces apoptosis in ovarian cancer cells. Int J Mol Sci 2013; 14:21790-804. [PMID: 24192821 PMCID: PMC3856035 DOI: 10.3390/ijms141121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022] Open
Abstract
The combination of fenretinide and selenite on ovarian cancer cells was investigated to assess its effects on proliferation and ability to induce apoptosis. Our results showed that fenretinide and selenite in combination significantly suppress the proliferation of ovarian cancer cells and induced apoptosis (including reactive oxygen species generation, and the loss of mitochondrial membrane potential) compared with either drug used alone. The caspase3/9-dependent pathway was triggered significantly in combination treatment, and moreover, the AMPK pathway also mediated the apoptosis induction in fenretinide and selenite combination. Fenretinide and selenite combination treatment was demonstrated to suppress tumor growth in vivo, this drug combination has been thus found to have an enhanced anti-tumor effect on ovarian cancers cells.
Collapse
Affiliation(s)
- Jie Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | |
Collapse
|