1
|
Rai RP, Syed A, Elgorban AM, Abid I, Wong LS, Khan MS, Khatoon J, Prasad KN, Ghoshal UC. Expressions of selected microRNAs in gastric cancer patients and their association with Helicobacter pylori and its cag pathogenicity island. Microb Pathog 2025; 202:107442. [PMID: 40049249 DOI: 10.1016/j.micpath.2025.107442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Helicobacter pylori infection and the resulting inflammation of the stomach are widely recognized as the primary risk factors for the development of gastric cancer (human health). Despite numerous attempts, the correlation between various virulence factors of H. pylori and stomach cancer remains mainly unexplained. The cag pathogenicity island (cagPAI) is a widely recognized indicator of virulence in H. pylori. MicroRNAs play crucial roles in a wide range of biological and pathological processes and dysregulated expressions of miRNAs have been detected in numerous cancer types. However, research on the correlation between H. pylori infection and its cagPAI, as well as the differential expression of microRNAs in gastric cancer, is lacking. AIM The aim of this study was to examine the differential expression of miRNAs in 80 patients with gastric cancer, specifically in connection to the presence of H. pylori and its cag pathogenicity island (cagPAI). METHODS Biopsies of 80 gastric cancer patients were collected and used for H. pylori DNA isolation and tissue miRNA isolation, and further analyzed for cagPAI and miRNA expression and their association. RESULTS Elevated levels of miR-21, miR-155, and miR-223 were detected in malignant tissues. The expression of miR-21 and miR-223 was considerably elevated in biopsies that tested positive for H. pylori, whereas the expression of miR-34a was reduced. H. pylori cagPAI samples that are functionally intact exhibit greater expression of miR-21 and miR-223 compared to cagPAI samples that are partially deleted, in both normal and malignant tissues. CONCLUSION Thus, the novelty of our study lies in its focus on the differential expression of specific miRNAs in relation to the functional integrity of the cagPAI in H. pylori-infected gastric cancer patients, offering a more detailed understanding of the interplay between H. pylori virulence factors and miRNA regulation than previous studies.
Collapse
Affiliation(s)
- Ravi Prakash Rai
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Islem Abid
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Jahanarah Khatoon
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Kashi N Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow, India.
| |
Collapse
|
2
|
Wang X, Wang J, Mao L, Yao Y. Helicobacter pylori outer membrane vesicles and infected cell exosomes: new players in host immune modulation and pathogenesis. Front Immunol 2024; 15:1512935. [PMID: 39726601 PMCID: PMC11670821 DOI: 10.3389/fimmu.2024.1512935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) and exosomes are essential mediators of host-pathogen interactions. Elucidating their mechanisms of action offers valuable insights into diagnosing and treating infectious diseases and cancers. However, the specific interactions of Helicobacter pylori (H. pylori) with host cells via OMVs and exosomes in modulating host immune responses have not been thoroughly investigated. This review explores how these vesicles elicit inflammatory and immunosuppressive responses in the host environment, facilitate pathogen invasion of host cells, and enable evasion of host defenses, thereby contributing to the progression of gastric diseases and extra-gastric diseases disseminated through the bloodstream. Furthermore, the review discusses the challenges and future directions for investigating OMVs and exosomes, underscoring their potential as therapeutic targets in H. pylori-associated diseases.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, The First People’s Hospital of
Kunshan, Kunshan, Jiangsu, China
| | | | | | | |
Collapse
|
3
|
Zhang X, Shi L, Chen C, Ma Y, Ma Y. The role of miRNA in IBS pathogenesis, diagnosis and therapy: The latest thought. Dig Liver Dis 2024; 56:1433-1441. [PMID: 38342744 DOI: 10.1016/j.dld.2024.01.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
IBS is a prevalent clinical condition affecting bowel function. There is a restricted comprehension of its pathogenesis, an absence of particular diagnostic tools, and an insufficiency of efficient pharmacological remedies. MiRNAs are a highly conserved class of non-coding small molecule RNAs, with a length of 20-24 nucleotides. Research has shown the presence of a number of differentially expressed miRNAs in the colonic tissue and peripheral blood of IBS patients. Meanwhile, miRNAs have a critical role in gene expression and the pathology of IBS as they act as significant mediators of post-transcriptional gene silencing. The investigation of miRNA molecular regulatory networks proves useful in examining the convoluted pathogenesis of IBS. This paper presents a review of recent literature on miRNAs associated with IBS, explains how miRNAs contribute to the development of IBS, and assesses the potential usefulness of miRNA analysis for diagnosing and treating IBS.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Li J, Li X, Zhang Z, Wang S, Huang X, Min L, Li P. Helicobacter pylori promotes gastric fibroblast proliferation and migration by expulsing exosomal miR-124-3p. Microbes Infect 2024; 26:105236. [PMID: 37813158 DOI: 10.1016/j.micinf.2023.105236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Gastric fibroblasts (GFs) are direct targets of Helicobacter pylori (H. pylori). GFs infected with H. pylori exhibit marked changes in their morphology and biological behavior. However, the molecular mechanisms by which H. pylori regulates GFs remain unknown. In this study, we cocultured GFs with H. pylori for 48 h. As a result, GFs exhibited an elongated and spindle-shaped morphology. Further, cancer-associated fibroblast (CAF) biomarkers were increased, and related behaviors were significantly enhanced in H. pylori-activated GFs. The number of extracellular vesicles (EVs) secreted by H. pylori-activated GFs remarkably increased. The miR-124-3p level was increased in secreted EVs but decreased in the cytoplasm of H. pylori-activated GFs. Overexpression of miRNA-124-3p in the original GFs significantly suppressed their proliferation and migration. In addition, the migration-promoting effects of H. pylori-activated GFs were suppressed by miR-124-3p and GW4869, which blocked EV generation. Finally, pull-down and luciferase assays revealed that SNAI2 is a target of miR-124-3p. The migration-inhibitory effects of GFs treated with miR-124-3p were eliminated by the overexpression of SNAI2, and the upregulation of SNAI2 in H. pylori-activated GFs was partially alleviated by miR-124-3p or GW4869. Overall, H. pylori infection promotes the proliferation and migration of GFs by accelerating the expulsion of EVs carrying miRNA-124-3p, a SNAI2 inhibitor.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China; Department of Gastroenterology, Chui Yang Liu Hospital Affiliated to Tsinghua University, 100020 Beijing, PR China
| | - Xiangji Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China
| | - Xinyuan Huang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China.
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050 Beijing, PR China.
| |
Collapse
|
5
|
Huang BS, Chen CT, Yeh CC, Fan TY, Chen FY, Liou JM, Shun CT, Wu MS, Chow LP. miR-21 Targets ASPP2 to Inhibit Apoptosis via CHOP-Mediated Signaling in Helicobacter pylori-Infected Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2023; 2023:6675265. [PMID: 37547633 PMCID: PMC10403333 DOI: 10.1155/2023/6675265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Helicobacter pylori (H. pylori) infection affects cell survival pathways, including apoptosis and proliferation in host cells, and disruption of this balance is the key event in the development of H. pylori-induced gastric cancer (HPGC). H. pylori infection induces alterations in microRNAs expression that may be involved in GC development. Bioinformatic analysis showed that microRNA-21 (miR-21) is significantly upregulated in HPGC. Furthermore, quantitative proteomics and in silico prediction were employed to identify potential targets of miR-21. Following functional enrichment and clustered interaction network analyses, five candidates of miR-21 targets, PDCD4, ASPP2, DAXX, PIK3R1, and MAP3K1, were found across three functional clusters in association with cell death and survival, cellular movement, and cellular growth and proliferation. ASPP2 is inhibited by H. pylori-induced miR-21 overexpression. Moreover, ASPP2 levels are inversely correlated with miR-21 levels in HPGC tumor tissues. Thus, ASPP2 was identified as a miR-21 target in HPGC. Here, we observed that H. pylori-induced ASPP2 suppression enhances resistance to apoptosis in GC cells using apoptosis assays. Using protein interaction network and coimmunoprecipitation assay, we identified CHOP as a direct mediator of the ASPP2 proapoptotic activity in H. pylori-infected GC cells. Mechanistically, ASPP2 suppression promotes p300-mediated CHOP degradation, in turn inhibiting CHOP-mediated transcription of Noxa, Bak, and suppression of Bcl-2 to enact antiapoptosis in the GC cells after H. pylori infection. Clinicopathological analysis revealed correlations between decreased ASPP2 expression and higher HPGC risk and poor prognosis. In summary, the discovery of H. pylori-induced antiapoptosis via miR-21-mediated suppression of ASPP2/CHOP-mediated signaling provides a novel perspective for developing HPGC management and treatment.
Collapse
Affiliation(s)
- Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Yeh
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Yun Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Gamal NS, Ashraf S, Hesham N, Aboushousha T, Hegab F, Safwat G, Magdy M. Immunohistochemical Expression of CD90, CD133, and TPM1 in Relation to Gastric Cancer and H. pylori Association. Asian Pac J Cancer Prev 2023; 24:2121-2127. [PMID: 37378943 PMCID: PMC10505886 DOI: 10.31557/apjcp.2023.24.6.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer-related death worldwide. Multiple malignancies overexpress CD90, making it a helpful diagnostic and prognostic marker. CD133 is suggested to be related to poor prognosis in GC. Tropomyosin-1 (TPM1) tumor-suppressor gene low expression may predict poor survival in GC. Our study aimed to investigate CD90, CD133, and TPM1 immunohistochemical expression in GC in relation to diagnosis, prognosis, and Helicobacter pylori (H. pylori) infection. METHODS 144 paraffin blocks containing gastric cancerous (108 cases), and non-cancerous (36 cases) tissue were analyzed histopathologically for the type of lesion, grade, and stage of malignancy and by using an immunohistochemical assay for studying the expression of CD90, CD133, and TPM1. Data analysis was carried out using the Statistical Package for the Social Sciences (SPSS) version 20.0. RESULTS The obtained results showed a significantly higher expression of CD90 and CD133 while showing a significantly lower expression of TPM1 in malignant samples compared to benign ones. CD90 was significantly higher in grade-3, stage-3, and N3 (p<0.05), with no significant difference concerning positive and negative H. pylori samples. CD133 percentage and H-score were significantly higher in grade-2 and stage-4 tumors than in other grades and stages, while being insignificantly higher in N3 and H. pylori-positive cases. TPM1 expression levels were significantly downregulated in GC and H. pylori-positive cases (p<0.05). TPM1 downregulation was associated with grade progression, increased depth of invasion, and tumor node metastasis. CONCLUSION CD90, CD133, and TPM1 immunohistochemical expression in the gastric biopsy are related firmly to grades and stages of GC as well as H. pylori infection, so they could be of prognostic value. Further studies on a larger sample size are recommended.
Collapse
Affiliation(s)
- Noha Sayed Gamal
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Salma Ashraf
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Noha Hesham
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Tarek Aboushousha
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| | - Fatma Hegab
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Mona Magdy
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| |
Collapse
|
7
|
Khan U, Karmakar BC, Basak P, Paul S, Gope A, Sarkar D, Mukhopadhyay AK, Dutta S, Bhattacharya S. Glycyrrhizin, an inhibitor of HMGB1 induces autolysosomal degradation function and inhibits Helicobacter pylori infection. Mol Med 2023; 29:51. [PMID: 37038107 PMCID: PMC10088177 DOI: 10.1186/s10020-023-00641-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a key agent for causing gastric complications linked with gastric disorders. In response to infection, host cells stimulate autophagy to maintain cellular homeostasis. However, H. pylori have evolved the ability to usurp the host's autophagic machinery. High mobility group box1 (HMGB1), an alarmin molecule is a regulator of autophagy and its expression is augmented during infection and gastric cancer. Therefore, this study aims to explore the role of glycyrrhizin (a known inhibitor of HMGB1) in autophagy during H. pylori infection. MAIN METHODS Human gastric cancer (AGS) cells were infected with the H. pylori SS1 strain and further treatment was done with glycyrrhizin. Western blot was used to examine the expression of autophagy proteins. Autophagy and lysosomal activity were monitored by fluorescence assays. A knockdown of HMGB1 was performed to verify the effect of glycyrrhizin. H. pylori infection in in vivo mice model was established and the effect of glycyrrhizin treatment was studied. RESULTS The autophagy-lysosomal pathway was impaired due to an increase in lysosomal membrane permeabilization during H. pylori infection in AGS cells. Subsequently, glycyrrhizin treatment restored the lysosomal membrane integrity. The recovered lysosomal function enhanced autolysosome formation and concomitantly attenuated the intracellular H. pylori growth by eliminating the pathogenic niche. Additionally, glycyrrhizin treatment inhibited inflammation and improved gastric tissue damage in mice. CONCLUSION This study showed that inhibiting HMGB1 restored lysosomal activity to ameliorate H. pylori infection. It also demonstrated the potential of glycyrrhizin as an antibacterial agent to address the problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Uzma Khan
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Priyanka Basak
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Sangita Paul
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-NICED, ICMR- National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Deotima Sarkar
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Sushmita Bhattacharya
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India.
| |
Collapse
|
8
|
Nikolaieva N, Sevcikova A, Omelka R, Martiniakova M, Mego M, Ciernikova S. Gut Microbiota-MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 2022; 11:microorganisms11010107. [PMID: 36677399 PMCID: PMC9867529 DOI: 10.3390/microorganisms11010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pre-clinical models and clinical studies highlight the significant impact of the host-microbiota relationship on cancer development and treatment, supporting the emerging trend for a microbiota-based approach in clinical oncology. Importantly, the presence of polymorphic microbes is considered one of the hallmarks of cancer. The epigenetic regulation of gene expression by microRNAs affects crucial biological processes, including proliferation, differentiation, metabolism, and cell death. Recent evidence has documented the existence of bidirectional gut microbiota-microRNA interactions that play a critical role in intestinal homeostasis. Importantly, alterations in microRNA-modulated gene expression are known to be associated with inflammatory responses and dysbiosis in gastrointestinal disorders. In this review, we summarize the current findings about miRNA expression in the intestine and focus on specific gut microbiota-miRNA interactions linked to intestinal homeostasis, the immune system, and cancer development. We discuss the potential clinical utility of fecal miRNA profiling as a diagnostic and prognostic tool in colorectal cancer, and demonstrate how the emerging trend of gut microbiota modulation, together with the use of personalized microRNA therapeutics, might bring improvements in outcomes for patients with gastrointestinal cancer in the era of precision medicine.
Collapse
Affiliation(s)
- Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Michal Mego
- National Cancer Institute and Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-02-3229519
| |
Collapse
|
9
|
Expression Analysis of MicroRNAs, miR-20a, miR-30a, miR-210, and miR-874 in Helicobacter pylori-infected patients with or without Gastric Cancer. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Prediction of Blood miRNA-mRNA Regulatory Network in Gastric Cancer. Rep Biochem Mol Biol 2021; 10:243-256. [PMID: 34604414 DOI: 10.52547/rbmb.10.2.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023]
Abstract
Background The aim of the study was to suggest a high specific and sensitive blood biomarker for early GC diagnosis. Methods the expression data of miRNAs and mRNAs were collected from the blood samples of the GC patients based on literature mining. Bioinformatics tools and databases (PANTHER, TargetScan, miRTarBase, miRDB, STRING, and Cytoscape) were used to predict the regulatory relationship. Subsequently, expression level of the selected miRNA was evaluated in the blood samples of gastritis patients to recognize the common miRNA between the GC and gastritis patients. Results Analysis of 40 target genes by MCODE (installed in Cytoscape software) indicated 4 hub genes (WWP1, SKP2, KLHL42, and FBXO11) as a significant cluster in the PPI network related to miR-21, with Node Score Cutoff: 0.2, Degree Cutoff: 2 and K-Core: 2. In addition, the miRNA RT-qPCR results showed that, the expression level of miR-21 was significantly higher in gastritis group compared to the healthy group (p< 0.05). Conclusion the present study clearly demonstrated the increasing level of blood miR-21 among the gastritis patients infected by H. pylori. Therefore, the altered miRNAs, especially overexpression of onco-miRs, may identify a potential link between miRNAs and pathogenesis of the H. pylori-related complications.
Collapse
|
11
|
Pita I, Libânio D, Dias F, Teixeira AL, Nogueira I, Medeiros R, Dinis-Ribeiro M, Pimentel-Nunes P. Original Article: MicroRNA Dysregulation in the Gastric Carcinogenesis Cascade: Can We Anticipate Its Role in Individualized Care? Pathobiology 2021; 88:338-350. [PMID: 34274936 DOI: 10.1159/000515548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric carcinogenesis progresses from normal mucosa, atrophic/metaplastic gastritis, and dysplasia to adenocarcinoma. MicroRNAs (miRNAs) regulate DNA expression and have been implicated; however, their role is not fully established. AIMS The aim of this study was to characterize plasma and tissue expression of several miRNAs in gastric carcinogenesis stages. METHODS Single-center cross-sectional study in 64 patients: 19 controls (normal mucosa); 15 with extensive atrophic/metaplastic gastritis; and 30 with early gastric neoplasia (EGN). Seven miRNAs (miR-21, miR-146a, miR-181b, miR-370, miR-375, miR 181b, and miR-490) were quantified by real time-qPCR in peripheral blood and endoscopic biopsy samples. RESULTS We found a significant upregulation of miR-181b, miR-490, and miR-21 in the EGN mucosa (overexpression 2-14-times higher than controls). We observed a significant underexpression of miR-146a and miR-370 in atrophic/metaplastic gastritis (86 and 66% decrease, p = 0.008 and p = 0.001) and in EGN (89 and 62% reduction, p = 0.034 and p = 0.032) compared with controls. There were no differences between lesions and nonneoplastic mucosa and no dysregulation of plasma miRNAs. CONCLUSION We found significant dysregulation of 5 miRNAs in gastric carcinogenesis, suggesting a tumor suppressor role for miR-146a and miR-370 and oncogenic potential for miR-21, miR-181, and miR-490. These changes happen diffusely in the gastric mucosa, suggesting a high-risk field defect, which may influence these patients' surveillance.
Collapse
Affiliation(s)
- Inês Pita
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Diogo Libânio
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University (UFP), Porto, Portugal
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
12
|
Khayam N, Nejad HR, Ashrafi F, Abolhassani M. Expression Profile of miRNA-17-3p and miRNA-17-5p Genes in Gastric Cancer Patients with Helicobacter pylori Infection. J Gastrointest Cancer 2021; 52:130-137. [PMID: 31997281 DOI: 10.1007/s12029-019-00319-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The most common chronic bacterial infection is Helicobacter pylori. The connection between chronic H. pylori infection and gastric cancer is recognized. The early detection of gastric cancer improves survival. miRNAs regulate gene expression in eukaryotes by inhibiting mRNA translocation or degradation. The objective of this study was to compare the expression of miRNA-17-3p and miRNA-17-5p genes in gastric cancer patients with Helicobacter pylori infection. METHODS Herein, 30 isolates were identified as H. pylori based on urease test, and 30 and 12 cases were isolated from gastric cancer patients and non-Helicobacter pylori cases as control, respectively. A peripheral blood sample was collected from patients. Analysis of total mRNA extracts from peripheral blood samples, for gene expression changes (miRNA-17-3p and miRNA-17-5p) by quantitative real-time polymerase chain reaction (qRT-PCR), was done. RESULTS As said by the results, p values showed that expression levels of miRNA-17-3p and miRNA-17-5p were significantly higher in H. pylori-positive GC patients and H. pylori-positive non-GC patients with comparing by healthy controls. So, there was no significant difference between expression levels of miRNA-17-3p and miRNA-17-5p in H. pylori-positive GC patients and H. pylori-positive non-GC patients. CONCLUSION Considering our results, the high expression of miRNA-17-3p and miRNA-17-5p has a direct relationship with increased cell proliferation, inhibition of tumor cell apoptosis and tumor angiogenesis, in addition to miRNAs play an important role as biomarkers in helping for detection of the patient by H. pylori infection to become cancerous. Therefore, it can be used to make specific diagnostic kits and to treat patients.
Collapse
Affiliation(s)
- Nazanin Khayam
- Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hamideh Rouhani Nejad
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Fatemeh Ashrafi
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohsen Abolhassani
- Hybridoma Lab., Dept. of Immunology, Pasteur Institute of Iran, Tehran, 13164, Iran
| |
Collapse
|
13
|
Zhu S, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, Soutto M, Que J, Garcia-Buitrago M, Zaika A, El-Rifai W. Silencing of miR490-3p by H. pylori activates DARPP-32 and induces resistance to gefitinib. Cancer Lett 2020; 491:87-96. [PMID: 32735911 PMCID: PMC7541786 DOI: 10.1016/j.canlet.2020.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is the main risk factor for gastric carcinogenesis. In this study, we investigated the expression, molecular functions, and downstream effectors of miR490-3p in gastric cancer. We used in vitro and in vivo models to investigate the role of H. pylori in regulating miR490-3p, DARPP-32-dependent functions, and therapeutic resistance. Human and mouse neoplastic gastric lesions demonstrated a negative correlation between DARPP-32 and miR490-3p expression (R = -0.58, P < 0.01). This was also detected following infection with H. pylori (R = -0.66, P < 0.01). Molecular assays confirmed DARPP-32 as a direct target of miR490-3p. CHRM2, the host gene of miR490-3p, was hypermethylated and downregulated in neoplastic gastric tissues (P < 0.05). H. pylori induced methylation and downregulation of CHRM2 and miR490-3p. Functionally, the reconstitution of miR490-3p sensitized cancer cells to gefitinib by inactivating DRAPP-32-dependent AKT and STAT3 pathways. Patients with low miR490-3p or high DARPP-32 expression had decreased overall survival (P < 0.05). Hypermethylation-mediated silencing of CHRM2 and miR490-3p by H. pylori increased DARPP-32 expression. Downregulation of miR490-3p in gastric cancer plays a role in gefitinib response by inducing DARPP-32-mediated activation of PI3K/AKT, STAT3 signaling pathways.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Shayan Khalafi
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Zheng Chen
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| | - Julio Poveda
- Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Dunfa Peng
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Heng Lu
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA.
| | - Mohammed Soutto
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| | | | - Alexander Zaika
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery and Department of Pathology, Miler School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
14
|
Evaluation of miR-21 Expression Level in Helicobacter pylori-Infected Gastric Mucosa. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Gastric cancer is one of the main causes of death worldwide. In this regard, Helicobacter pylori infection is considered as the main risk factor for gastric cancer. MicroRNA (mirNA) can interface with mRNA molecules as well as blocking their translation into proteins or inducing degradation. Objectives: The aim of this study was to compare the expression of mir-21 in biopsy samples of gastritis and healthy adjacent tissues. Methods: Between Feb-Dec 2017, 70 patients with dyspeptic symptoms from Taleghani Hospital were enrolled in this study. Accordingly, the expression level of mir-21 was evaluated using semi-quantitative RT-PCR in mucosal biopsy samples from those well-characterized patients. Moreover, the U6 gene was used as an internal control. Results: Our data indicated that mir-21 expression was significantly up-regulated in the infected samples with H. pylori compared to healthy samples. Conclusions: Our results confirm that H. pylori infection can alter the expression of mir-21 in gastric epithelial cells and gastric mucosal tissues. However, the exact role of the miRNA changes in H. pylori infection will require further experiments.
Collapse
|
15
|
Codolo G, Toffoletto M, Chemello F, Coletta S, Soler Teixidor G, Battaggia G, Munari G, Fassan M, Cagnin S, de Bernard M. Helicobacter pylori Dampens HLA-II Expression on Macrophages via the Up-Regulation of miRNAs Targeting CIITA. Front Immunol 2020; 10:2923. [PMID: 31969878 PMCID: PMC6960189 DOI: 10.3389/fimmu.2019.02923] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages have a major role in infectious and inflammatory diseases, and the available data suggest that Helicobacter pylori persistence can be explained in part by the failure of the bacterium to be killed by professional phagocytes. Macrophages are cells ready to kill the engulfed pathogen, through oxygen-dependent and -independent mechanisms; however, their killing potential can be further augmented by the intervention of T helper (Th) cells upon the specific recognition of human leukocyte antigen (HLA)-II-peptide complexes on the surface of the phagocytic cells. As it pertains to H. pylori, the bacterium is engulfed by macrophages, but it interferes with the phagosome maturation process leading to phagosomes with an altered degradative capacity, and to megasomes, wherein H. pylori resists killing. We recently showed that macrophages infected with H. pylori strongly reduce the expression of HLA-II molecules on the plasma membrane and this compromises the bacterial antigen presentation to Th lymphocytes. In this work, we demonstrate that H. pylori hampers HLA-II expression in macrophages, activated or non-activated by IFN-γ, by down-regulating the expression of the class II major histocompatibility complex transactivator (CIITA), the "master control factor" for the expression of HLA class II genes. We provided evidence that this effect relies on the up-regulation of let-7f-5p, let-7i-5p, miR-146b-5p, and -185-5p targeting CIITA. MiRNA expression analysis performed on biopsies from H. pylori-infected patients confirmed the up-regulation of let-7i-5p, miR-146b-5p, and -185-5p in gastritis, in pre-invasive lesions, and in gastric cancer. Taken together, our results suggest that specific miRNAs may be directly involved in the H. pylori infection persistence and may contribute to confer the risk of developing gastric neoplasia in infected patients.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
| | | | - Francesco Chemello
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Sara Coletta
- Department of Biology, University of Padua, Padua, Italy
| | | | | | - Giada Munari
- Istituto Oncologico Veneto (IRCCS), Padua, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
- CIR-Myo Myology Center, University of Padua, Padua, Italy
| | | |
Collapse
|
16
|
Yousefi B, Mohammadlou M, Abdollahi M, Salek Farrokhi A, Karbalaei M, Keikha M, Kokhaei P, Valizadeh S, Rezaiemanesh A, Arabkari V, Eslami M. Epigenetic changes in gastric cancer induction by Helicobacter pylori. J Cell Physiol 2019; 234:21770-21784. [PMID: 31169314 DOI: 10.1002/jcp.28925] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Epigenetic disorder mechanisms are one of the causes of cancer. The most important of these changes is the DNA methylation, which leads to the spread of Helicobacter pylori and inflammatory processes followed by induction of DNA methylation disorder. Mutations and epigenetic changes are the two main agents of neoplasia. Epithelial cells infection by H. pylori associated with activating several intracellular pathways including: MAPK, NF-κB, Wnt/β-catenin, and PI3K are affects a variety of cells and caused to an increase in the production of inflammatory cytokines, changes in apoptosis, proliferation, differentiation, and ultimately leads to the transformation of epithelial cells into oncogenic. The arose of free radicals impose the DNA cytosine methylation, and NO can increase the activity of DNA methyltransferase. H. pylori infection causes an environment that mediates inflammation and signaling pathways that probably caused to stomach tumorigenicity. The main processes that change by decreasing or increasing the expression of various microRNAs expressions include immune responses, apoptosis, cell cycle, and autophagy. In this review will be describe a probably H. pylori roles in infection and mechanisms that have contribution in epigenetic changes in the promoter of genes.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Abdollahi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Saeid Valizadeh
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Arabkari
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
17
|
Hu L, Li HY, Chen WQ, Lao SX, Luo Q. Ultrastructure Characteristics of Different Chinese Medicine Syndromes of Helicobacter pylori-Correlated Gastric Diseases. Chin J Integr Med 2019; 25:917-921. [DOI: 10.1007/s11655-019-3019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
|
18
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
19
|
Zare A, Alipoor B, Omrani MD, Zali MR, Malekpour Alamdari N, Ghaedi H. Decreased miR-155-5p, miR-15a, and miR-186 Expression in Gastric Cancer Is Associated with Advanced Tumor Grade and Metastasis. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 31103022 PMCID: PMC6661124 DOI: 10.29252/.23.5.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers with a high rate of mortality in the world. In recent years, microRNAs (miRNAs) have been proposed to be involved in GC development. In this study, we aimed at investigating differential expression level of miR-155-5p, miR-15a, miR-15b, and miR-186 in GC. Methods For this research, we used qPCR to investigate miR-15b, miR-155, miR-15a, and miR-186 expression levels in a total of 29 normal gastric tissue, 45 gastric dysplasia, and 39 GC samples. Results We showed significant down-regulation of miR-155-5p (p = 0.0018), miR-15a (p = 0.0159), and miR-186 (p = 0.0005) expression in GC tissue. Conclusion This study provides evidence for deregulated expression of miR155-5p, miR-186, and miR-15a in GC and is providing new insights into the potential implication of these miRNAs in the pathogenesis of GC.
Collapse
Affiliation(s)
- Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- Department of General Surgery, Clinical Research and Development Unit at Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| |
Collapse
|
20
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
21
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Yu J, Xu Q, Zhang X, Zhu M. Circulating microRNA signatures serve as potential diagnostic biomarkers for Helicobacter pylori infection. J Cell Biochem 2019; 120:1735-1741. [PMID: 30324743 DOI: 10.1002/jcb.27462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023]
Abstract
Helicobacter pylor (H pylori), a Gram-negative, microaerobic human pathogen, has been found to be involved in many gastroduodenal diseases. Accurate diagnosis of H pylori infection is a vital part of the effective management of gastroduodenal diseases. Circulating microRNAs (miRNAs) have shown the potential to be used as noninvasive biomarkers for the diagnosis of infectious diseases. The aim of this study was to explore plasma miRNAs as noninvasive biomarkers for H pylori infection. We performed a plasma miRNA expression profile using Illumina high-throughput sequencing and validated the levels of differentially expressed miRNAs in the plasma of 63 H pylori-infected patients and 41 healthy volunteers by quantitative real-time polymerase chain reaction (qRT-PCR). The sequencing results showed that 37 miRNAs were upregulated in the H pylori-infected patients compared with that in the healthy volunteers, while six miRNAs were downregulated. qRT-PCR and receiver operator characteristic analysis suggested that the expression of miR-28-3p, miR-143-3p, miR-151a-3p, and miR-148a-3p were closely associated with H pylori infection. Therefore, the four plasma miRNA panels mentioned above could serve as promising noninvasive biomarkers of H pylori infection.
Collapse
Affiliation(s)
- Jie Yu
- Colorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Qiaoxia Xu
- Nursing Department, Huaiyin Hospital of Huai'an City, Huai'an, Jiangsu, China
| | - Xiaoyu Zhang
- Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Miao Zhu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Zabaglia LM, Sallas ML, Santos MPD, Orcini WA, Peruquetti RL, Constantino DH, Chen E, Smith MDAC, Payão SM, Rasmussen LT. Expression of miRNA‐146a, miRNA‐155, IL‐2, and TNF‐α in inflammatory response to
Helicobacter pylori
infection associated with cancer progression. Ann Hum Genet 2017; 82:135-142. [DOI: 10.1111/ahg.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - Elizabeth Chen
- Universidade Federal de São Paulo (UNIFESP) São Paulo São Paulo Brazil
| | | | | | | |
Collapse
|
24
|
Li Z, Ni J. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp Ther Med 2017; 14:5069-5074. [PMID: 29201216 DOI: 10.3892/etm.2017.5183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the role and mechanism of action of microRNA (miR)-26a in deep vein thrombosis (DVT). Peripheral blood was collected from 45 patients with DVT and 40 healthy controls. Levels of miR-26a, chemokine C-C motif ligand (CCL)2 mRNA and CCL7 mRNA were detected using reverse transcription-quantitative polymerase chain reaction and the value of miR-26a in the clinical diagnosis of DVT was assessed using receiver operating characteristic curve analysis. The correlation of miR-26a with CCL2 and CCL7 levels was analyzed using Spearman's rank correlation. In addition, miR-26a and protein kinase C δ (PRKCD) were overexpressed in human umbilical vein endothelial cells (HUVECs) and PRKCD expression was knocked down by small interfering (si)RNA. Western blotting was conducted to detect the expression of PRKCD and p65. Furthermore, a dual-luciferase reporter gene assay was performed. The results of the current study demonstrated that the expression of miR-26a was significantly downregulated in the peripheral blood of patients with DVT compared with healthy controls (P<0.05) and negatively correlated with CCL2 and CCL7 levels (P<0.05). Furthermore, it was demonstrated that miR-26a markedly inhibited the expression of PRKCD, significantly decreased levels of CCL2 and CCL7 mRNA (P<0.05) and inhibited activation of the NF-κB signaling pathway. Overexpression of PRKCD in HUVECs inhibited the effects of miR-26a and markedly upregulated the phosphorylation of p65. The present study indicated that miR-26a directly targets PRKCD mRNA and that miR-26a may be a useful biomarker in the clinical diagnosis of DVT. Thus, the present findings suggest that miR-26a regulates the NF-κB signaling pathway by binding to PRKCD mRNA, inhibits the expression of CCL2 and CCL7 and reduces the risk of DVT.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics, Xiangya Second Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiangdong Ni
- Department of Orthopedics, Xiangya Second Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
25
|
A Concise Review of MicroRNA Exploring the Insights of MicroRNA Regulations in Bacterial, Viral and Metabolic Diseases. Mol Biotechnol 2017; 59:518-529. [DOI: 10.1007/s12033-017-0034-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 2017; 13:e1006440. [PMID: 28704539 PMCID: PMC5509344 DOI: 10.1371/journal.ppat.1006440] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of β-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of β-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and β-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.
Collapse
|
27
|
Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori. Cytokine 2017; 96:203-207. [PMID: 28458166 DOI: 10.1016/j.cyto.2017.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Interleukin 2 (IL-2) is a pro-inflammatory cytokine that is mainly synthesized by immunoregulatory T helper cells and which plays an important role in antitumor immunity. Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric mucosa and induces the production of IL-2. This process increases the magnitude of inflammation and may influence the development of gastric pathologies. In light of the possible involvement of IL-2 and the presence of H. pylori in gastric diseases, this study investigated possible associations between the IL-2 polymorphisms +114 T>G (rs2069763) and -330 T>G (rs2069762) and the development of gastric cancer; these associations were then correlated with the presence of H. pylori. Gastric biopsies were obtained from 294 dyspeptic patients (173♀/123♂). Of these samples, 181 were chronic gastritis samples (102♀/79), 62 were samples of intact gastric mucosa (47♀/15♂), and 51 were samples of gastric cancer (22♀/29♂). PCR-RFLP was used to characterize the +114 T>G and -330 T>G polymorphisms. Considering the genetic characteristics of the study population and based on the codominant model, a high risk of gastric cancer among patients with normal gastric tissue and patients with gastric cancer was found in subjects with the IL-2-330 GG genotype (OR=6.43, 95% CI: 1.47-28.10, p=0.044). The data was adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer, a high risk was found among subjects with the IL-2-330 GG genotype (OR=4.47, 95% CI: 1.84-10.84, p=0.0022). When the IL-2 +114 polymorphism was analyzed, similar results were found. Among the patients with normal gastric tissue and the patients with gastric cancer, subjects carrying the +114 TT genotype were found to be at a high risk of gastric cancer (OR=5.97, 95% CI: 1.60-22.27, p=0.013). This data was also adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer, a high risk was found in subjects carrying the +114 TT genotype (OR=6.36, 95% CI: 2.66-15.21, p<0.0001). The haplotype was also analyzed. The -330G/+114T haplotype was found to be significantly associated with gastric cancer. Therefore, our results show that, among patients with H. pylori infection, the -330 GG and +114 TT genotypes are significantly associated with a high risk of developing gastric cancer, as is the -330G/+114T haplotype.
Collapse
|
28
|
Chen SY, Zhang RG, Duan GC. Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 2016; 36:3087-3094. [PMID: 27748858 DOI: 10.3892/or.2016.5145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
Infection with Helicobacter pylori is the strongest risk factor for the development of chronic gastritis, gastric ulcer and gastric carcinoma. The majority of the H. pylori-infected population remains asymptomatic, and only 1% of individuals may progress to gastric cancer. The clinical outcomes caused by H. pylori infection are considered to be associated with bacterial virulence, genetic polymorphism of hosts as well as environmental factors. Most H. pylori strains possess a cytotoxin-associated gene (cag) pathogenicity island (cagPAI), encoding a 120-140 kDa CagA protein, which is the most important bacterial oncoprotein. CagA is translocated into host cells via T4SS system and affects the expression of signaling proteins in a phosphorylation-dependent and independent manner. Thus, this review summarizes the results of relevant studies, discusses the pathogenesis of CagA-mediated gastric cancer.
Collapse
Affiliation(s)
- Shuai-Yin Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Rong-Guang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guang-Cai Duan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
29
|
Li Y, Luo T, Wang L, Wu J, Guo S. MicroRNA-19a-3p enhances the proliferation and insulin secretion, while it inhibits the apoptosis of pancreatic β cells via the inhibition of SOCS3. Int J Mol Med 2016; 38:1515-1524. [DOI: 10.3892/ijmm.2016.2748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|