1
|
von Hessert-Vaudoncourt C, Lelek S, Geisler C, Hartung T, Bröker V, Briest F, Mochmann L, Jost-Brinkmann F, Sedding D, Benecke J, Freitag H, Wolfshöfer S, Lammert H, Nölting S, Hummel M, Schrader J, Grabowski P. Concomitant inhibition of PI3K/mTOR signaling pathways boosts antiproliferative effects of lanreotide in bronchopulmonary neuroendocrine tumor cells. Front Pharmacol 2024; 15:1308686. [PMID: 38375032 PMCID: PMC10875132 DOI: 10.3389/fphar.2024.1308686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction: Somatostatin analogues (SSAs) are commonly used in the treatment of hormone hypersecretion in neuroendocrine tumors (NETs), however the extent to which they inhibit proliferation is much discussed. Objective: We studied the antiproliferative effects of novel SSA lanreotide in bronchopulmonary NETs (BP-NETs). We focused on assessing whether pretreating cells with inhibitors for phosphatidylinositol 3-kinase (PI3K) and mammalian target for rapamycin (mTOR) could enhance the antiproliferative effects of lanreotide. Methods: BP-NET cell lines NCI-H720 and NCI-H727 were treated with PI3K inhibitor BYL719 (alpelisib), mTOR inhibitor everolimus and SSA lanreotide to determine the effect on NET differentiation markers, cell survival, proliferation and alterations in cancer-associated pathways. NT-3 cells, previously reported to express somatostatin receptors (SSTRs) natively, were used as control for SSTR expression. Results: SSTR2 was upregulated in NCI-H720 and NT-3 cells upon treatment with BYL719. Additionally, combination treatment consisting of BYL719 and everolimus plus lanreotide tested in NCI-H720 and NCI-H727 led to diminished cell proliferation in a dose-dependent manner. Production of proteins activating cell death mechanisms was also induced. Notably, a multiplexed gene expression analysis performed on NCI-H720 revealed that BYL719 plus lanreotide had a stronger effect on the downregulation of mitogens than lanreotide alone. Discussion/Conclusion: We report a widespread analysis of changes in BP-NET cell lines at the genetic/protein expression level in response to combination of lanreotide with pretreatment consisting of BYL719 and everolimus. Interestingly, SSTR expression reinduction could be exploited in therapeutic and diagnostic applications. The overall results of this study support the evaluation of combination-based therapies using lanreotide in preclinical studies to further increase its antiproliferative effect and ultimately facilitate its use in high-grade tumors.
Collapse
Affiliation(s)
| | - Sara Lelek
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Geisler
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresa Hartung
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Bröker
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Briest
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Liliana Mochmann
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Jost-Brinkmann
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dagmar Sedding
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joana Benecke
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wolfshöfer
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, Universitätsspital Zürich, Zurich, Germany
- Department of Internal Medicine II, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Schrader
- I. Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Grabowski
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Gagliano T, Brancolini C. Targeting histone deacetylases for combination therapies in neuroendocrine tumors. Cancer Gene Ther 2020; 28:547-550. [PMID: 33221822 DOI: 10.1038/s41417-020-00260-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, University of Udine, Piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Claudio Brancolini
- Department of Medicine, University of Udine, Piazzale Kolbe, 4, 33100, Udine, Italy
| |
Collapse
|
3
|
Zanini S, Renzi S, Giovinazzo F, Bermano G. mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Front Endocrinol (Lausanne) 2020; 11:562505. [PMID: 33304317 PMCID: PMC7701056 DOI: 10.3389/fendo.2020.562505] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells in the gastrointestinal tract. They are heterogeneous, and though initially considered rare tumors, the incidence of GEP-NENs has increased in the last few decades. Therapeutic approaches for the metastatic disease include surgery, radiological intervention by chemoembolisation, radiofrequency ablation, biological therapy in addition to somatostatin analogs, and PRRT therapy (177Lu-DOTATATE). The PI3K-AKT-mTOR pathway is essential in the regulation of protein translation, cell growth, and metabolism. Evidence suggests that the mTOR pathway is involved in malignant progression and resistance to treatment through over-activation of several mechanisms. PI3K, one of the main downstream of the Akt-mTOR axis, is mainly involved in the neoplastic process. This pathway is frequently deregulated in human tumors, making it a central target in the development of new anti-cancer treatments. Recent molecular studies identify potential targets within the PI3K/Akt/mTOR pathway in GEP-NENs. However, the use of target therapy has been known to lead to resistance due to several mechanisms such as feedback activation of alternative pathways, inactivation of protein kinases, and deregulation of the downstream mTOR components. Therefore, the specific role of targeted drugs for the management of GEP-NENs is yet to be well-defined. The variable clinical presentation of advanced neuroendocrine tumors is a significant challenge for designing studies. This review aims to highlight the role of the PI3K/Akt/mTOR pathway in the development of neuroendocrine tumors and further specify its potential as a therapeutic target in advanced stages.
Collapse
Affiliation(s)
- Sara Zanini
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Serena Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Francesco Giovinazzo
- Fondazione Policlinico Universitario A. Gemelli Istituto di ricovero e cura a carattere scientifico (IRCCS), Department of Surgery -Transplantation Service, Rome, Italy
- *Correspondence: Francesco Giovinazzo
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Giovanna Bermano
| |
Collapse
|
4
|
Abstract
Pancreatic neuroendocrine tumors are rare tumors of the pancreas originating from the islets of the Langerhans. These tumors comprise 1% to 3% of all newly diagnosed pancreatic cancers every year and have a unique heterogeneity in clinical presentation. Whole-genome sequencing has led to an increased understanding of the molecular biology of these tumors. In this review, we will summarize the current knowledge of the signaling pathways involved in the tumorigenesis of pancreatic neuroendocrine tumors as well as the major studies targeting these pathways at preclinical and clinical levels.
Collapse
|
5
|
Vergaro V, Civallero M, Citti C, Cosenza M, Baldassarre F, Cannazza G, Pozzi S, Sacchi S, Fanizzi FP, Ciccarella G. Cell-Penetrating CaCO₃ Nanocrystals for Improved Transport of NVP-BEZ235 across Membrane Barrier in T-Cell Lymphoma. Cancers (Basel) 2018; 10:E31. [PMID: 29370086 PMCID: PMC5836063 DOI: 10.3390/cancers10020031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Owing to their nano-sized porous structure, CaCO₃ nanocrystals (CaCO₃NCs) hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide promise in drug delivery. We evaluate the possibility to encapsulate and release NVP-BEZ235, a novel and potent dual PI3K/mTOR inhibitor that is currently in phase I/II clinical trials for advanced solid tumors, from the CaCO₃NCs. Its chemical nature shows some intrinsic limitations which induce to administer high doses leading to toxicity; to overcome these problems, here we proposed a strategy to enhance its intracellular penetration and its biological activity. Pristine CaCO₃ NCs biocompatibility, cell interactions and internalization in in vitro experiments on T-cell lymphoma line, were studied. Confocal microscopy was used to monitor NCs-cell interactions and cellular uptake. We have further investigated the interaction nature and release mechanism of drug loaded/released within/from the NCs using an alternative approach based on liquid chromatography coupled to mass spectrometry. Our approach provides a good loading efficiency, therefore this drug delivery system was validated for biological activity in T-cell lymphoma: the anti-proliferative test and western blot results are very interesting because the proposed nano-formulation has an efficiency higher than free drug at the same nominal concentration.
Collapse
Affiliation(s)
- Viviana Vergaro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
| | - Monica Civallero
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena & Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | - Cinzia Citti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
- CNR NANOTEC-Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Maria Cosenza
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena & Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | - Francesca Baldassarre
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC-Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Cannazza
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
- CNR NANOTEC-Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Samantha Pozzi
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena & Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | - Stefano Sacchi
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena & Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Ciccarella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC-Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
6
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
7
|
Salazar R, Garcia-Carbonero R, Libutti SK, Hendifar AE, Custodio A, Guimbaud R, Lombard-Bohas C, Ricci S, Klümpen HJ, Capdevila J, Reed N, Walenkamp A, Grande E, Safina S, Meyer T, Kong O, Salomon H, Tavorath R, Yao JC. Phase II Study of BEZ235 versus Everolimus in Patients with Mammalian Target of Rapamycin Inhibitor-Naïve Advanced Pancreatic Neuroendocrine Tumors. Oncologist 2017; 23:766-e90. [PMID: 29242283 PMCID: PMC6058330 DOI: 10.1634/theoncologist.2017-0144] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
Lessons Learned. Treatment with BEZ235 has not been shown to demonstrate increased efficacy compared with everolimus and may be associated with a poorer tolerability profile. The hypothesis of dual targeting of the phosphatidylinositol 3‐kinase and mammalian target of rapamycin pathways in patients with advanced pancreatic neuroendocrine tumors may warrant further study using other agents.
Background. This phase II study investigated whether targeting the phosphatidylinositol 3‐kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway via PI3K, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) inhibition using BEZ235 may be more effective than mTORC1 inhibition with everolimus in patients with advanced pancreatic neuroendocrine tumors (pNET) who are naïve to mTOR inhibitor therapy. Methods. Patients with advanced pNET were randomized (1:1) to oral BEZ235 400 mg twice daily or oral everolimus 10 mg once daily on a continuous dosing schedule. The primary endpoint was progression‐free survival (PFS). Secondary endpoints included safety, overall response rate (ORR), overall survival (OS), and time to treatment failure. Results. Enrollment in this study was terminated early (62 enrolled of the 140 planned). The median PFS was 8.2 months (95% confidence interval [CI]: 5.3 to not evaluable [NE]) with BEZ235 versus 10.8 months (95% CI: 8.1–NE) with everolimus (hazard ratio 1.53; 95% CI: 0.72–3.25). The most commonly reported all‐grade adverse events (>50% of patients regardless of study treatment relationship) with BEZ235 were diarrhea (90.3%), stomatitis (74.2%), and nausea (54.8%). Conclusion. BEZ235 treatment in mTOR inhibitor‐naïve patients with advanced pNET did not demonstrate increased efficacy compared with everolimus and may be associated with a poorer tolerability profile.
Collapse
Affiliation(s)
- Ramon Salazar
- Department of Medical Oncology, Institut Català d'Oncologia-IDIBELL-CIBERONC, Universitat de Barcelona, Barcelona, Spain
| | | | - Steven K Libutti
- Albert Einstein College of Medicine, New York City, New York, USA
| | - Andrew E Hendifar
- David Geffen School of Medicine and Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Ana Custodio
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Rosine Guimbaud
- Department of Digestive Medical Oncology (IUCT-RL), Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Sergio Ricci
- Division of Medical Oncology, S Chiara University Hospital, Pisa, Italy
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaume Capdevila
- Vall Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nicholas Reed
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Annemiek Walenkamp
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Enrique Grande
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sufiya Safina
- Department of Biochemistry, Kazan State Medical University, Kazan, Russia
| | - Tim Meyer
- Royal Free Hospital, London, United Kingdom
| | - Oliver Kong
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Ranjana Tavorath
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - James C Yao
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Bollard J, Patte C, Massoma P, Goddard I, Gadot N, Benslama N, Hervieu V, Ferraro-Peyret C, Cordier-Bussat M, Scoazec JY, Roche C, Walter T, Vercherat C. Combinatorial Treatment with mTOR Inhibitors and Streptozotocin Leads to Synergistic In Vitro and In Vivo Antitumor Effects in Insulinoma Cells. Mol Cancer Ther 2017; 17:60-72. [DOI: 10.1158/1535-7163.mct-17-0325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
|
9
|
Martins D, Spada F, Lambrescu I, Rubino M, Cella C, Gibelli B, Grana C, Ribero D, Bertani E, Ravizza D, Bonomo G, Funicelli L, Pisa E, Zerini D, Fazio N. Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors. Target Oncol 2017; 12:611-622. [PMID: 28634872 DOI: 10.1007/s11523-017-0506-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroendocrine tumors (NETs) represent a large and heterogeneous group of malignancies with various biological and clinical characteristics, depending on the site of origin and the grade of tumor proliferation. In NETs, as in other cancer types, molecularly targeted therapies have radically changed the therapeutic landscape. Recently two targeted agents, the mammalian target of rapamycin inhibitor everolimus and the tyrosine kinase inhibitor sunitinib, have both demonstrated significantly prolonged progression free survival in patients with advanced pancreatic NETs. Despite these important therapeutic developments, there are still significant limitations to the use of these agents due to the lack of accurate biomarkers for predicting tumor response and efficacy of therapy. In this review, we provide an overview of the current clinical data for the evaluation of predictive factors of response to/efficacy of everolimus and sunitinib in advanced pancreatic NETs. Surrogate indicators discussed include circulating and tissue markers, as well as non-invasive imaging techniques.
Collapse
Affiliation(s)
- Diana Martins
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Francesca Spada
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Ioana Lambrescu
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Manila Rubino
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Chiara Cella
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Bianca Gibelli
- Division of Otolaryngology-Head and Neck Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Chiara Grana
- Division of Nuclear Medicine, European Institute of Oncology, IEO, Milan, Italy
| | - Dario Ribero
- Division of Hepatobiliopancreatic Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Emilio Bertani
- Division of Hepatobiliopancreatic Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Davide Ravizza
- Division of Endoscopy, European Institute of Oncology, IEO, Milan, Italy
| | - Guido Bonomo
- Division of Interventional Radiology, European Institute of Oncology, IEO, Milan, Italy
| | - Luigi Funicelli
- Division of Radiology, European Institute of Oncology, IEO, Milan, Italy
| | - Eleonora Pisa
- Division of Pathology, European Institute of Oncology, IEO, Milan, Italy
| | - Dario Zerini
- Division of Radiotherapy, European Institute of Oncology, IEO, Milan, Italy
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy.
| |
Collapse
|
10
|
The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models. PLoS One 2017; 12:e0182852. [PMID: 28800359 PMCID: PMC5553670 DOI: 10.1371/journal.pone.0182852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus.
Collapse
|
11
|
Falletta S, Partelli S, Rubini C, Nann D, Doria A, Marinoni I, Polenta V, Di Pasquale C, Degli Uberti E, Perren A, Falconi M, Zatelli MC. mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. Endocr Relat Cancer 2016; 23:883-891. [PMID: 27697900 DOI: 10.1530/erc-16-0329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Medical therapy of pancreatic neuroendocrine tumors (P-NET) may take advantage of Everolimus treatment. However, the extent of therapeutic response cannot be predicted. This study was aimed to identify the possible predictive markers of response to Everolimus in P-NET. We found that Everolimus reduced the cell viability and induced apoptosis in primary cultures of 6 P-NET (P-NET-R), where the proliferative and antiapoptotic effects of IGF1 were blocked by Everolimus. On the contrary, 14 P-NET primary cultures (P-NET-NR) were resistant to Everolimus and IGF1, suggesting an involvement of PI3K/AKT/mTOR pathway in the mechanism of resistance. The response to Everolimus in vitro was associated with an active AKT/mTOR pathway and seemed to be associated with a greater clinical aggressiveness. In addition, a patient sensitive to Everolimus in vitro was sensitive to this drug in vivo also and showed a positive p-AKT immunohistochemistry (IHC) at tissue level. Similarly, a patient resistant to Everolimus treatment after surgery was not sensitive to the drug in vitro and had a negative p-AKT IHC staining. Therefore, present data confirm that P-NET primary cultures may be considered a model for testing medical treatment efficacy and that IHC characterization of p-AKT might help in identifying human P-NET who can benefit from Everolimus treatment. These data encourage conducting a prospective multicenter study involving different groups of P-NET patients treated with Everolimus.
Collapse
Affiliation(s)
- Simona Falletta
- Department of Medical ScienceSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Partelli
- Pancreatic Surgery UnitPancreas Translational and Research Institute, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public HealthPolytechnic University of Marche, Ancona, Italy
| | - Dominik Nann
- Institut fur PathologieUniversity of Bern, Bern, Switzerland
| | - Andrea Doria
- Department of Biomedical Sciences and Public HealthPolytechnic University of Marche, Ancona, Italy
| | - Ilaria Marinoni
- Institut fur PathologieUniversity of Bern, Bern, Switzerland
| | - Vanessa Polenta
- Pancreatic Surgery UnitPancreas Translational and Research Institute, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Carmelina Di Pasquale
- Department of Medical ScienceSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Ettore Degli Uberti
- Department of Medical ScienceSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Aurel Perren
- Institut fur PathologieUniversity of Bern, Bern, Switzerland
| | - Massimo Falconi
- Pancreatic Surgery UnitPancreas Translational and Research Institute, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Chiara Zatelli
- Department of Medical ScienceSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|