1
|
Karuppaiah G, Lee MH, Bhansali S, Manickam P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens Bioelectron 2023; 239:115600. [PMID: 37611448 DOI: 10.1016/j.bios.2023.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Psychological stress is a major factor contributing to health discrepancies among individuals. Sustained exposure to stress triggers signalling pathways in the brain, which leading to the release of stress hormones in the body. Cortisol, a steroid hormone, is a significant biomarker for stress management due to its responsibility in the body's reply to stress. The release of cortisol in bloodstream prepares the body for a "fight or flight" response by increasing heart rate, blood pressure, metabolism, and suppressing the immune system. Detecting cortisol in biological samples is crucial for understanding its role in stress and personalized healthcare. Traditional techniques for cortisol detection have limitations, prompting researchers to explore alternative strategies. Electrochemical sensing has emerged as a reliable method for point-of-care (POC) cortisol detection. This review focuses on the progress made in electrochemical sensors for cortisol detection, covering their design, principle, and electroanalytical methodologies. The analytical performance of these sensors is also analysed and summarized. Despite significant advancements, the development of electrochemical cortisol sensors faces challenges such as biofouling, sample preparation, sensitivity, flexibility, stability, and recognition layer performance. Therefore, the need to develop more sensitive electrodes and materials is emphasized. Finally, we discussed the potential strategies for electrode design and provides examples of sensing approaches. Moreover, the encounters of translating research into real world applications are addressed.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Marilac Soalheiro L, de Jesus Brandão B, Paiva RVN, Dias Carvalho L, Menezes Paranhos RD, Ribeiro Barbosa PC, Guerrero-Vargas NN, Tamura EK. Familiarity of Brazilian psychologists with basic concepts in sleep science and chronobiology. Chronobiol Int 2023; 40:1072-1083. [PMID: 37661786 DOI: 10.1080/07420528.2023.2250870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Desynchronization of circadian rhythms and sleep-wake patterns impacts biochemical, physiological, and behavioral functions, including mental processes. The complex relationship between circadian rhythms and mental health makes it challenging to determine causality between circadian desynchronization and mental disorders. Regarding the fact that psychologists act as the front line for initial mental health care, we aimed to assess the knowledge and use of sleep science and basic chronobiology by professional psychologists in Brazil. Data were collected via an online questionnaire completed by 1384 professional psychologists between October 2018 and May 2019. Our findings revealed that ±80% of psychologists reported that at least half of their patients presented some sleep-related complaints; however, only ±27% routinely inquired about sleep quality even in the absence of patient complaints. Additionally, only ±66% initiated treatments to understand these complaints, potentially influenced by the lack of prior academic exposure to biological rhythms as reported by ±76% of Brazilian psychologists interviewed. Importantly, ±15% did not believe in an association between mental health and biological rhythms, and even a significant ±67% were unfamiliar with the term chronobiology and ±63% were not able to describe any other biological rhythm except for the sleep-wake cycle. These results demonstrate that fundamental concepts in chronobiology and sleep science are unknown to a substantial proportion of Brazilian psychologists. In conclusion, we propose that this subject could be more effectively integrated into psychologists' academic training, potentially promoting benefits through the incorporation of a chronobiological approach in mental health practice.
Collapse
Affiliation(s)
| | | | | | - Lázaro Dias Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paulo César Ribeiro Barbosa
- Department of Human Sciences and Philosophy, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Natali N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, México City, México
| | - Eduardo Koji Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
3
|
Fujimura A, Ushijima K. Understanding the role of chronopharmacology for drug optimization: what do we know? Expert Rev Clin Pharmacol 2023; 16:655-668. [PMID: 37403790 DOI: 10.1080/17512433.2023.2233438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Circadian rhythm influences the pharmacokinetics and pharmacodynamics of a number of drugs and affects their therapeutic efficacy and toxicity depending on the time of day they are administered. Chronopharmacology is a method for incorporating knowledge about circadian rhythm into pharmacotherapy. Chronotherapy, which is the clinical application of chronopharmacology, is particularly relevant when the risk and/or severity of symptoms of a disease change in a predictable manner over time. Chronotherapy has potential benefits in the treatment of many diseases. AREAS COVERED Although a considerable amount of knowledge about chronopharmacology and chronotherapy has been accumulated, its therapeutic application in clinical practice remains limited in terms of therapy optimization. Resolution of these issues will improve our ability to deliver adequate drug treatment. EXPERT OPINION We propose four approaches for promoting chronotherapy-based drug treatment in clinical practice: targeting drug development and regulatory authorities; education about chronotherapy; drug information for both health professionals and consumers; and a chronotherapy network.
Collapse
Affiliation(s)
- Akio Fujimura
- Department of Clinical Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| |
Collapse
|
4
|
Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020676. [PMID: 33466883 PMCID: PMC7830980 DOI: 10.3390/ijerph18020676] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
The synthesis and secretion of cortisol are controlled by the hypothalamic–pituitary–adrenal axis. Cortisol exhibits a proper 24-h circadian rhythm that affects the brain, the autonomic nervous system, the heart, and the vasculature that prepares the cardiovascular system for optimal function during these anticipated behavioral cycles. A literature search was conducted using databases such as Google Scholar, PubMed, and Scopus. Relevant search terms included “circadian rhythm and cardiovascular”, “cortisol”, “cortisol and acute coronary syndrome”, “cortisol and arrhythmias”, “cortisol and sudden cardiac death”, “cortisol and stroke”, and “cardioprotective agents”. A total of 120 articles were obtained on the basis of the above search. Lower levels of cortisol were seen at the beginning of sleep, while there was a rise towards the end of sleep, with the highest level reached at the moment the individual wakes up. In the present review, we discuss the role of 11β-hydroxysteroid dehydrogenase (11β-HSD1), which is a novel molecular target of interest for treating metabolic syndrome and type-2 diabetes mellitus. 11β-HSD1 is the major determinant of cortisol excess, and its inhibition alleviates metabolic abnormalities. The present review highlights the role of cortisol, which controls the circadian rhythm, and describes its effect on the cardiovascular system. The review provides a platform for future potential cardioprotective therapeutic agents.
Collapse
|
5
|
Selfridge JM, Gotoh T, Schiffhauer S, Liu J, Stauffer PE, Li A, Capelluto DGS, Finkielstein CV. Chronotherapy: Intuitive, Sound, Founded…But Not Broadly Applied. Drugs 2017; 76:1507-1521. [PMID: 27699644 PMCID: PMC5082589 DOI: 10.1007/s40265-016-0646-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are a collection of endogenously driven biochemical, physiological, and behavioral processes that oscillate in a 24-h cycle and can be entrained by external cues. Circadian clock molecules are responsible for the expression of regulatory components that modulate, among others, the cell’s metabolism and energy consumption. In clinical practice, the regulation of clock mechanisms is relevant to biotransformation of therapeutics. Accordingly, xenobiotic metabolism and detoxification, the two processes that directly influence drug effectiveness and toxicity, are direct manifestations of the daily oscillations of the cellular and biochemical processes taking place within the gastrointestinal, hepatic/biliary, and renal/urologic systems. Consequently, the impact of circadian timing should be factored in when developing therapeutic regimens aimed at achieving maximum efficacy, minimum toxicity, and decreased adverse effects in a patient. However, and despite a strong mechanistic foundation, only 0.16 % of ongoing clinical trials worldwide exploit the concept of ‘time-of-day’ administration to develop safer and more effective therapies. In this article, we (1) emphasize points of control at which circadian biology intersects critical processes governing treatment interventions; (2) explore the extent to which chronotherapeutics are incorporated into clinical trials; (3) recognize roadblocks; and (4) recommend approaches to precipitate the integration of chronobiological concepts into clinical practice.
Collapse
Affiliation(s)
- Julia M Selfridge
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Samuel Schiffhauer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - JingJing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Philip E Stauffer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Andrew Li
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Carla V Finkielstein
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|