1
|
Wassif GA, Alrehely MS, Alharbi DM, Aljohani AA. The Impact of Vitamin D on Neuropsychiatric Disorders. Cureus 2023; 15:e47716. [PMID: 38022259 PMCID: PMC10676226 DOI: 10.7759/cureus.47716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Vitamin D is a fat-soluble vitamin that has multiple biological effects on the body. Recent findings have also linked vitamin D deficiency to a range of neuropsychiatric disorders. The aim of this review article is to provide insight into the metabolism of vitamin D and its effect on the body, especially on the brain, and to recognize the role of vitamin D in some neuropsychiatric disorders. Vitamin D is well-known as a neuroactive steroid that modulates brain functions and development. There is strong evidence to show that optimal vitamin D levels are important to protect against neuropsychiatric disorders. Vitamin D has also been proposed to alter neurotransmitter pathways in the central nervous system. Abnormalities in these neurotransmitters have been implicated in various neuropsychiatric diseases, such as schizophrenia, Parkinson's disease, and depression. Vitamin D also has some reported neurosteroid-like actions, including regulation of calcium homeostasis, clearance of amyloid-peptide, and antioxidant and anti-inflammatory effects, as well as possible protection against the neurodegenerative mechanisms associated with Alzheimer's disease and autism. Vitamin D is an important modulator of brain development and has many functions in the brain. Several studies found that vitamin D has a protective role in neuropsychiatric disorders, and its supplementation decreases the development of these disorders and lowers their symptoms. Therefore, evidence shows that early intervention to maintain vitamin D concentrations at sufficiently high levels is crucial to slow, prevent, or improve neurocognitive decline.
Collapse
Affiliation(s)
- Ghada A Wassif
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, EGY
- Department of Anatomy, College of Medicine, Taibah University, Medina, SAU
| | | | | | | |
Collapse
|
2
|
Grosu L, Grosu AI, Crisan D, Zlibut A, Perju-Dumbrava L. Parkinson's disease and cardiovascular involvement: Edifying insights (Review). Biomed Rep 2023; 18:25. [PMID: 36846617 PMCID: PMC9944619 DOI: 10.3892/br.2023.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative illnesses, and is a major healthcare burden with prodigious consequences on life-quality, morbidity, and survival. Cardiovascular diseases are the leading cause of mortality worldwide and growing evidence frequently reports their co-existence with PD. Cardiac dysautonomia due to autonomic nervous system malfunction is the most prevalent type of cardiovascular manifestation in these patients, comprising orthostatic and postprandial hypotension, along with supine and postural hypertension. Moreover, many studies have endorsed the risk of patients with PD to develop ischemic heart disease, heart failure and even arrhythmias, but the underlying mechanisms are not entirely clear. As importantly, the medication used in treating PD, such as levodopa, dopamine agonists or anticholinergic agents, is also responsible for cardiovascular adverse reactions, but further studies are required to elucidate the underlying mechanisms. The purpose of this review was to provide a comprehensive overview of current available data regarding the overlapping cardiovascular disease in patients with PD.
Collapse
Affiliation(s)
- Laura Grosu
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Neurology, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Alin Ionut Grosu
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Cardiology, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crisan
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Internal Medicine, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Alexandru Zlibut
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Cardiology, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Lacramioara Perju-Dumbrava
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
de Siqueira EA, Magalhães EP, de Menezes RRPPB, Sampaio TL, Lima DB, da Silva Martins C, Neves KRT, de Castro Brito GA, Martins AMC, de Barros Viana GS. Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease? Neurosci Lett 2023; 793:136997. [PMID: 36470505 DOI: 10.1016/j.neulet.2022.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic cells in the substantia nigra pars compacta. PD patients' brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The present study aims to evaluate the neuroprotective activity of VD3 on astrocytes after their exposure to rotenone (ROT) a natural pesticide known to exhibit neurotoxic potential via the inhibition of mitochondrial complex I. Cell viability parameters were evaluated by the MTT test and staining with 7-AAD in cultures of astrocytes treated and untreated with VD3 (0.1, 0.5, and 1.0 ng/mL) and/or ROT (10 µg/mL or 5 µg/mL), and the cytoplasmic production of ROS and the cell death profile were measured by flow cytometry. Glutathione accumulation and ultrastructural changes were evaluated and immunocytochemistry assays for NF-kB and Nrf2 were also carried out. The results showed that VD3 improved the viability of cells previously treated with VD3 and then exposed to ROT, reducing the occurrence of necrotic and apoptotic events. Furthermore, cells exposed to ROT showed increased production of ROS, which decreased significantly with previous treatment with VD3. Importantly, the decrease by ROT in the mitochondrial transmembrane potential was significantly prevented after treating cells with VD3, especially at a concentration of 1 ng/mL. Therefore, treatment with VD3 protected astrocytes from damage caused by ROT, decreasing oxidative stress, decreasing NF-kB and Nrf2 expressions, and improving mitochondrial function. However, further investigation is needed regarding the participation and mechanism of action of VD3 in this cellular model of PD focusing on the crosstalk between Nrf2 and NF-kB.
Collapse
|
4
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Abstract
Background The importance of vitamin D deficiency in Parkinson's disease, its negative influence on bone health, and even disease pathogenesis has been studied intensively. However, despite its possible severe impact on health and quality of life, there is not a sufficient understanding of its role in other movement disorders. This systematic review aims at providing an overview of the prevalence of vitamin D deficiency, bone metabolism alterations, and fractures in each of the most common hyperkinetic movement disorders (HKMDs). Methods The study search was conducted through PubMed with keywords or Medical Related Subjects (MeSH) of common HKMDs linked with the terms of vitamin D, osteoporosis, injuries, and fractures. Results Out of 1585 studies screened 40 were included in our review. They show that there is evidence that several HKMDs, including Huntington disease, Restless Legs Syndrome, and tremor, are associated with low vitamin D serum levels in up to 83% and 89% of patients. Reduced bone mineral density associated with vitamin D insufficiency was described in Huntington disease. Discussion Our survey suggests that vitamin D deficiency, bone structure changes, and fractures are important but yet under-investigated issues in HKMDs. HKMDs-patients, particularly with a history of previous falls, should have their vitamin D-levels tested and supplemented where appropriate. Highlights Contrary to Parkinson's disease, vitamin D deficiency, and bone abnormalities are under-investigated in hyperkinetic movement disorders (HKMDs). Several HKMDs, including essential tremor, RLS, and Huntington disease, are associated with vitamin D deficiency in up to 89%, the latter also with reduced bone mineral density. Testing and where appropriate supplementation is recommended.
Collapse
|
6
|
Kim JE, Oh E, Park J, Youn J, Kim JS, Jang W. Serum 25-hydroxyvitamin D3 level may be associated with olfactory dysfunction in de novo Parkinson's disease. J Clin Neurosci 2018; 57:131-135. [PMID: 30135017 DOI: 10.1016/j.jocn.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
The purpose of our study was to investigate the association between olfactory function in Parkinson's disease (PD) and serum vitamin D status. Thirty-nine patients with de novo PD were enrolled in this study. Olfactory function was assessed by an odor identification test, as a part of the KVSS (Korean version of sniffin' sticks) II test. All patients were also assessed with the NMSS (Non-Motor Symptoms Scale for PD) to check the subjective change in ability to smell. Vitamin D status was determined by measuring the level of serum 25-hydroxyvitamin D3 (25-OHD3). Multiple linear regression tests and correlation analysis were applied to verify the association between serum 25-OHD3 level and patients' subjective and objective olfactory dysfunction. The serum 25-OHD3 level was independently associated with odor identification score in patients with PD (β = 0.38, p < 0.01). Another statistically significant variable was clinical subtype of PD (Intermediate subtype: β = -0.33, p < 0.05; Akinetic rigid type: β = -0.55, p < 0.01). The serum 25-OHD3 level was also negatively correlated with the score for item number 28 in NMSS (Spearman's rho = -0.32, p < 0.05). Our results showed that vitamin D status might be an independent factor for olfactory dysfunction in PD. Although the underlying mechanism has not been clearly identified, we postulate that vitamin D plays a role in the pathogenesis of olfactory dysfunction in PD. Further investigation to elucidate the precise relationship of vitamin D to PD is essential.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University, College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jinse Park
- Department of Neurology, Inje University, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, College of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, College of Medicine, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea.
| |
Collapse
|
7
|
Koduah P, Paul F, Dörr JM. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 2017; 8:313-325. [PMID: 29209434 PMCID: PMC5700019 DOI: 10.1007/s13167-017-0120-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D research has gained increased attention in recent times due to its roles beyond bone health and calcium homeostasis, such as immunomodulation. In some parts of the brain and on immune cells, vitamin D hydroxylating enzymes and its receptors are located. Epidemiological evidence demonstrates that deficiency of Vitamin D is relevant for disease risk and course in multiple sclerosis (MS) and presumably also in neuromyelitis optica spectrum disorders (NMOSD), Parkinson's disease (PD), and Alzheimer's disease (AD). Although the exact mechanism underlying vitamin D effects in these diseases remains widely unexplored, human and animal studies continue to provide some hints. While the majority of vitamin D researchers so far speculate that vitamin D may be involved in disease pathogenesis, others could not show any association although none have reported that sufficient vitamin D worsens disease progression. The studies presented in this review suggest that whether vitamin D may have beneficial effects in disease course or not, may be dependent on factors such as ethnicity, gender, diet, vitamin D receptor (VDR) polymorphisms and sunlight exposure. We here review the possible role of vitamin D in the pathogenesis and disease course of MS, NMOSD, PD, and AD and potential therapeutic effects of vitamin D supplementation which may be relevant for predictive, preventive, and personalized medicine. We suggest areas to consider in vitamin D research for future studies and recommend the need to supplement patients with low vitamin D levels below 30 ng/ml to at least reach sufficient levels.
Collapse
Affiliation(s)
- Priscilla Koduah
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Markus Dörr
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, and Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
| |
Collapse
|
8
|
Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 2016; 54:5440-5448. [PMID: 27596507 DOI: 10.1007/s12035-016-0079-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.
Collapse
|
9
|
The effects of uric Acid, serum vitamin d3, and their interaction on Parkinson's disease severity. PARKINSONS DISEASE 2015; 2015:463483. [PMID: 25802799 PMCID: PMC4354724 DOI: 10.1155/2015/463483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/14/2014] [Accepted: 01/31/2015] [Indexed: 01/11/2023]
Abstract
Objectives. In current study, the relationships between serum vitamin D3 levels and serum UA concentrations as well as their interaction with severity of PD were evaluated in a sample of Iranian PD patients. Method. In a cross sectional study at the one of the main referral hospitals in central region of Iran, during September to November 2011, 112 patients were recruited. Severity of PD was evaluated sing H&R stages and UPDRS. Results. The Spearman rank correlation coefficient suggests the negative significant association between serum vitamin D3 and UPDRS in patients aged >62 (r = −0.34, P < 0.05). No statistically significant association was observed between the UA levels and severity of PD (represented by H&Y categories) in different levels of serum vitamin D3 not only in total sample but also in separate age and sex groups. The linear regression coefficients suggested positive association between UA and serum vitamin D3 with UPDRSIII scores while negative relationship between UA and serum vitamin D3 interaction with UPDRSIII; however it was only statistically significant in age group ≤62 (P < 0.05). Conclusion. Our study revealed a negative correlation between interaction of serum vitamin D3 and UA with severity of PD; other studies are required to confirm our findings.
Collapse
|
10
|
Zuo L, Motherwell MS. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease. Gene 2013; 532:18-23. [PMID: 23954870 DOI: 10.1016/j.gene.2013.07.085] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022]
Abstract
The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Li Zuo
- Molecular Physiology and Biophysics Laboratory, Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Biophysics Graduate Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
11
|
Long KVQ, Nguyễn LTH. Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain 2013; 6:16. [PMID: 23570271 PMCID: PMC3641959 DOI: 10.1186/1756-6606-6-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that there are aberrations in the vitamin D-endocrine system in subjects with amyotrophic lateral sclerosis (ALS). Here, we review the relationship between vitamin D and ALS. Vitamin D deficiency was reported in patients with ALS. Dietary vitamin D3 supplementation improves functional capacity in the G93A transgenic mouse model of ALS. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to ALS pathology, including major histocompatibility complex (MHC) class II molecules, toll-like receptors, poly(ADP-ribose) polymerase-1, heme oxygenase-1, and calcium-binding proteins, as well as the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on ALS through cell-signaling mechanisms, including glutamate, matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in ALS. Further investigation of vitamin D in ALS patients is needed.
Collapse
|
12
|
vinh quôc Luong K, Thi Hoàng Nguyên L. Vitamin D and Parkinson's disease. J Neurosci Res 2012; 90:2227-36. [DOI: 10.1002/jnr.23115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|