1
|
Kwon SJ, Kim MH, Kim HJ, Tran PT, Chung YS, Kim KH, Seo JK. Conferring non-strain-specific resistance to a potyvirus via overexpression of mutant potyviral coat proteins in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:202-204. [PMID: 39699287 DOI: 10.1111/jipb.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Transgenic soybean (Glycine max) plants expressing mutant potyviral coat proteins that disrupt virion assembly exhibited non-strain-specific resistance against soybean mosaic virus.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hye Jeong Kim
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Phu-Tri Tran
- Flagship Pioneering, Cambridge, Massachusetts, 02142, USA
| | - Young-Soo Chung
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Korea
| |
Collapse
|
2
|
Yin Y, Wang D, Wang H, Sun Y, Yin C, Li J, Ye J. Development and application of sugarcane streak mosaic virus vectors. Virology 2024; 593:110028. [PMID: 38394980 DOI: 10.1016/j.virol.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Sugarcane streak mosaic virus (SCSMV) is one of the major pathogens of sugarcane in the world. Molecular studies and disease management of SCSMV are hindered by the lack of efficient infectious clones. In this study, we successfully constructed Agrobacterium infiltration based infectious clone of SCSMV with different variants. Infectious clones of wild type SCSMV could efficiently infect Nicotiana benthamiana and sugarcane plants resulting in streak and mosaic symptoms on systemic leaves which were further confirmed with RT-PCR and serological assays. SCSMV variants of less adenylation displayed attenuated pathogenicity on N.benthamiana. SCSMV-based recombinant heterologous EGFP protein vector was also developed. The EGFP-tagged recombinant SCSMV could highly expressed in vegetative organs including roots. These infectious clones of SCSMV could be further developed for platform tools for both biotechnological studies and management of SCSMV disease.
Collapse
Affiliation(s)
- Yuteng Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cece Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, 661699, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
5
|
Soleimanizadeh M, Jalali Javaran M, Bagheri A, Behdani M. Apoplastic Production of Recombinant AntiVEGF Protein Using Plant-Virus Transient Expression Vector. Mol Biotechnol 2022; 64:1013-1021. [PMID: 35332419 DOI: 10.1007/s12033-022-00483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Targeting of vascular endothelial growth factor (VEGF) using AntiVEGF can be a promising approach for angiogenesis inhibition and cancer therapy. In this study, we direct AntiVEGF recombinant protein accumulation to cucurbit plant apoplast using a suitable signal (Pr1b) sequence. After assembling the target gene construct and cloning into the expression vector, we infected the plants with the resulting pZYMV-AntiVEGF viral vector. Transcription of the target gene was confirmed with RT-PCR assays. The apoplast-targeted AntiVEGF recombinant protein was detected in infected plants by Dot-blot, western blot, and ELISA analysis. AntiVEGF protein accumulation in the apoplast resulted in levels of 1.2% of TSP (Total Soluble Protein) that demonstrated a two-order increase compared to the cytoplasm-targeted protein. After purification of AntiVEGF protein using aqueous two-phase system (ATPS), purified protein was analyzed with MTT assay. Our results reveal that production of biologically active and correctly processed apoplast-targeted AntiVEGF recombinant protein is possible in plant apoplast. The low level of cytoplasm-targeted AntiVEGF recombinant protein might result from the degradation of improperly folded protein.
Collapse
Affiliation(s)
- Mojgan Soleimanizadeh
- Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Wang D, Cui L, Zhang L, Ma Z, Niu Y. Complete Genome Sequencing and Infectious cDNA Clone Construction of Soybean Mosaic Virus Isolated from Shanxi. THE PLANT PATHOLOGY JOURNAL 2021; 37:162-172. [PMID: 33866758 PMCID: PMC8053849 DOI: 10.5423/ppj.oa.11.2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the crossfamily infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| | - Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801,
China
| | - Li Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801,
China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| |
Collapse
|
7
|
Błażejewska K, Kapusta M, Zielińska E, Tukaj Z, Chincinska IA. Mature Luffa Leaves ( Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration. FRONTIERS IN PLANT SCIENCE 2017; 8:228. [PMID: 28270826 PMCID: PMC5318407 DOI: 10.3389/fpls.2017.00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 05/23/2023]
Abstract
We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits.
Collapse
Affiliation(s)
- Kamila Błażejewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Elżbieta Zielińska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Izabela A. Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| |
Collapse
|
8
|
Park SH, Choi H, Kim S, Cho WK, Kim KH. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus. THE PLANT PATHOLOGY JOURNAL 2016; 32:371-6. [PMID: 27493613 PMCID: PMC4968648 DOI: 10.5423/ppj.nt.11.2015.0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 05/14/2023]
Abstract
Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.
Collapse
Affiliation(s)
- Sang-Ho Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Semin Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Corresponding author. Phone) +82-2-880-4677, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|