1
|
Lai Y, Wang J, Xie N, Liu G, Lacap-Bugler DC. Identification of a novel forkhead transcription factor MtFKH1 for cellulase and xylanase gene expression in Myceliophthora thermophila (ATCC 42464). Microbiol Res 2025; 294:128097. [PMID: 39970722 DOI: 10.1016/j.micres.2025.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Myceliophthora thermophila is a thermophilic fungus, known to produce industrially important enzymes in biorefineries. The mechanism underlying cellulase and xylanase expression in filamentous fungi is a complex regulatory network controlled by numerous transcription factors (TFs). These TFs in M. thermophila remain unclear. Here, we identified and characterised a novel cellulase and xylanase regulator MtFKH1 in M. thermophila through comparative transcriptomic and genetic analyses. Five of the eight potential TFs, which showed differential expression levels when grown on Avicel and glucose, were successfully deleted using the newly designed CRISPR/Cas9 system. This system identified the forkhead TF MtFKH1. The disruption of Mtfkh1 elevated the cellulolytic and xylanolytic enzyme activities, whereas the overexpression of Mtfkh1 led to considerable decrease in cellulase and xylanase production in M. thermophila cultivated on Avicel. The loss of Mtfkh1 also exhibited an impairment in sporulation in M. thermophila. Real-time quantitative reverse transcription PCR (RT-qPCR) and the electrophoretic mobility shift assays (EMSAs) demonstrated that MtFKH1 regulates the gene expression and specifically bind to the promoter regions of genes encoding β-glucosidase (bgl1/MYCTH_66804), cellobiohydrolase (cbh1/MYCTH_109566), and xylanase (xyn1/MYCTH_112050), respectively. Furthermore, DNase I footprinting analysis identified binding motif of MtFKH1 in the upstream region of Mtbgl1, with strongest binding affinity. Finally, transcriptomic profiling and Gene Ontology (GO) enrichment analyses of Mtfkh1 deletion mutant revealed that the regulon of MtFKH1 were significantly prevalent in hydrolase activity (acting on glycosyl bonds), polysaccharide binding, and carbohydrate metabolic process functional categories. These findings expand our knowledge on how forkhead transcription factor regulates lignocellulose degradation and provide a novel target for engineering of fungal cell factories with the hyperproduction of cellulase and xylanase.
Collapse
Affiliation(s)
- Yapeng Lai
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | | |
Collapse
|
2
|
Lohmar JM, Gross SR, Carter-Wientjes CH, Mack BM, Wei Q, Lebar MD, Cary JW. The putative forkhead transcription factor FhpA is necessary for development, aflatoxin production, and stress response in Aspergillus flavus. PLoS One 2025; 20:e0315766. [PMID: 40029854 PMCID: PMC11875336 DOI: 10.1371/journal.pone.0315766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/30/2024] [Indexed: 03/06/2025] Open
Abstract
Forkhead transcription factors regulate several important biological processes in many eukaryotic species including fungi. Bioinformatic analysis of the Aspergillus flavus genome revealed four putative forkhead transcription factor genes. Genetic disruption of (AFLA_005634), a homolog of the Aspergillus nidulans fhpA/fkhA gene (AN4521), revealed that the fhpA gene is a negative regulator of both asexual spore production and aflatoxin B1 production in A. flavus. Furthermore, disruption of the fhpA gene caused a complete loss of sclerotial formation. Overexpression of the fhpA gene caused A. flavus to become more sensitive to sodium chloride whereas disruption of the fhpA gene did not change the ability of A. flavus to respond to any osmotic stress agent tested. Interestingly, both disruption and overexpression of the fhpA gene led to increases in sensitivity to the oxidative stress agent menadione. Overall, these results suggest that fhpA is an important regulator of morphological and chemical development in addition to stress response in A. flavus.
Collapse
Affiliation(s)
- Jessica M. Lohmar
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Stephanie R. Gross
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Carol H. Carter-Wientjes
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Brian M. Mack
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Qijian Wei
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Matthew D. Lebar
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Jeffrey W. Cary
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| |
Collapse
|
3
|
Park J, Jeon H, Hwangbo A, Min K, Ko J, Kim JE, Kim S, Shin JY, Lee YH, Lee YW, Son H. A winged-helix DNA-binding protein is essential for self-fertility during sexual development of the homothallic fungus Fusarium graminearum. mSphere 2024; 9:e0051124. [PMID: 39189781 PMCID: PMC11423578 DOI: 10.1128/msphere.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Sexual reproduction is crucial for increasing the genetic diversity of populations and providing overwintering structures, such as perithecia and associated tissue, in the destructive plant pathogenic fungus Fusarium graminearum. While mating-type genes serve as master regulators in fungal sexual reproduction, the molecular mechanisms underlying this process remain elusive. Winged-helix DNA-binding proteins are key regulators of embryogenesis and cell differentiation in higher eukaryotes. These proteins are implicated in the morphogenesis and development of several fungal species. However, their involvement in sexual reproduction remains largely unexplored in F. graminearum. Here, we investigated the function of winged-helix DNA-binding proteins in vegetative growth, conidiation, and sexual reproduction, with a specific focus on the FgWING27, which is highly conserved among Fusarium species. Deletion of FgWING27 resulted in an abnormal pattern characterized by a gradual increase in the expression of mating-type genes during sexual development, indicating its crucial role in the stage-specific genetic regulation of MAT genes in the late stages of sexual development. Furthermore, using chromatin immunoprecipitation followed by sequencing analysis, we identified Fg17056 as a downstream gene of Fgwing27, which is essential for sexual reproduction. These findings underscore the significance of winged-helix DNA-binding proteins in fungal development and reproduction in F. graminearum, and highlight the pivotal role of Fgwing27 as a core genetic factor in the intricate genetic regulatory network governing sexual reproduction.IMPORTANCEFusarium graminearum is a devastating plant pathogenic fungus causing significant economic losses due to reduced crop yields. In Fusarium Head Blight epidemics, spores produced through sexual and asexual reproduction serve as inoculum, making it essential to understand the fungal reproduction process. Here, we focus on winged-helix DNA-binding proteins, which have been reported to play crucial roles in cell cycle regulation and differentiation, and address their requirement in the sexual reproduction of F. graminearum. Furthermore, we identified a highly conserved protein in Fusarium as a key factor in self-fertility, along with the discovery of its direct downstream genes. This provides crucial information for constructing the complex genetic regulatory network of sexual reproduction and significantly contribute to further research on sexual reproduction in Fusarium species.
Collapse
Affiliation(s)
- Jiyeun Park
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Sieun Kim
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Wanju, South Korea
| | - Ji Young Shin
- Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Song T, Li C, Jin K, Xia Y. The Forkhead Box Gene, MaSep1, Negatively Regulates UV- and Thermo-Tolerances and Is Required for Microcycle Conidiation in Metarhizium acridum. J Fungi (Basel) 2024; 10:544. [PMID: 39194870 DOI: 10.3390/jof10080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Insect pathogenic fungi have shown great potential in agricultural pest control. Conidiation is crucial for the survival of filamentous fungi, and dispersal occurs through two methods: normal conidiation, where conidia differentiate from mycelium, and microcycle conidiation, which involves conidial budding. The conidiation process is related to cell separation. The forkhead box gene Sep1 in Schizosaccharomyces pombe plays a crucial role in cell separation. Nevertheless, the function of Sep1 has not been clarified in filamentous fungi. Here, MaSep1, the homolog of Sep1 in Metarhizium acridum, was identified and subjected to functional analysis. The findings revealed that conidial germination of the MaSep1-deletion strain (ΔMaSep1) was accelerated and the time for 50% germination rate of conidial was shortened by 1 h, while the conidial production of ΔMaSep1 was considerably reduced. The resistances to heat shock and UV-B irradiation of ΔMaSep1 were enhanced, and the expression of some genes involved in DNA damage repair and heat shock response was significantly increased in ΔMaSep1. The disruption of MaSep1 had no effect on the virulence of M. acridum. Interestingly, ΔMaSep1 conducted the normal conidiation on the microcycle conidiation medium, SYA. Furthermore, 127 DEGs were identified by RNA-Seq between the wild-type and ΔMaSep1 strains during microcycle conidiation, proving that MaSep1 mediated the conidiation pattern shift by governing some genes associated with conidiation, cell division, and cell wall formation.
Collapse
Affiliation(s)
- Tiantian Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Chan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
5
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
6
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
7
|
Kim S, Lee R, Jeon H, Lee N, Park J, Moon H, Shin J, Min K, Kim JE, Yang JW, Son H. Identification of Essential Genes for the Establishment of Spray-Induced Gene Silencing-Based Disease Control in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19302-19311. [PMID: 38018120 DOI: 10.1021/acs.jafc.3c04557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
As resistance to chemical fungicides continues to increase inFusarium graminearum, there is a growing need to develop novel disease control strategies. To discover essential genes that could serve as new disease control targets, we selected essential gene candidates that had failed to be deleted in previous studies. Thirteen genes were confirmed to be essential, either by constructing conditional promoter replacement mutants or by employing a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated editing strategy. We synthesized double-stranded RNAs (dsRNAs) targeting these essential genes and analyzed their protective effects in plants using a spray-induced gene silencing (SIGS) method. When dsRNAs targeting Fg10360, Fg13150, and Fg06123 were applied to detached barley leaves prior to fungal inoculation, disease lesions were greatly reduced. Our findings provide evidence of the potential of essential genes identified by a SIGS method to be effective targets for the control of fungal diseases.
Collapse
Affiliation(s)
- Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Rowoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoung Shin
- Division of Bioresources Bank, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju 63240, Republic of Korea
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Jang SY, Son YE, Oh DS, Han KH, Yu JH, Park HS. The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans. J Microbiol Biotechnol 2023; 33:1420-1427. [PMID: 37528554 DOI: 10.4014/jmb.2307.07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.
Collapse
Affiliation(s)
- Seo-Yeong Jang
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Soon Oh
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hee-Soo Park
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Lee KH, Gumilang A, Fu T, Kang SW, Kim KS. The Autophagy Protein CsATG8 is Involved in Asexual Development and Virulence in the Pepper Anthracnose Fungus Colletotrichum scovillei. MYCOBIOLOGY 2022; 50:467-474. [PMID: 36721786 PMCID: PMC9848383 DOI: 10.1080/12298093.2022.2148393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/18/2023]
Abstract
Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.
Collapse
Affiliation(s)
- Kwang Ho Lee
- Division of Bio-Resource Sciences and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Korea
| | - Adiyantara Gumilang
- Division of Bio-Resource Sciences and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Korea
| | - Teng Fu
- Division of Bio-Resource Sciences and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Korea
| | - Sung Wook Kang
- Division of Bio-Resource Sciences and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
10
|
Proteomic Profiling of Plant and Pathogen Interaction on the Leaf Epidermis. Int J Mol Sci 2022; 23:ijms232012171. [PMID: 36293025 PMCID: PMC9603099 DOI: 10.3390/ijms232012171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The plant epidermis is the first line of plant defense against pathogen invasion, and likely contains important regulatory proteins related to the plant–pathogen interaction. This study aims to identify the candidates of these regulatory proteins expressed in the plant epidermis. We performed comparative proteomic studies to identify rapidly and locally expressed proteins in the leaf epidermis inoculated with fungal phytopathogen. The conidia solutions were dropped onto the Arabidopsis leaf surface, and then, we collected the epidermal tissues from inoculated and mock-treated leaves at 4 and 24 hpi. The label-free quantification methods showed that expressions of Arabidopsis proteins, which are related to defense signals, such as BAK1, MKK5, receptor-like protein kinases, transcription factors, and stomatal functions, were rapidly induced in the epidermal tissues of inoculated leaves. In contrast, most of them were not differentially regulated by fugal inoculation in the whole leaves. These findings clearly indicate that epidermal proteomics can monitor locally expressed proteins in inoculated areas of plant tissues. We also identified the 61 fungal proteins, including effector-like proteins specifically expressed on the Arabidopsis epidermis. Our new findings suggested that epidermal proteomics is useful for understanding the local expressions of plant and fungal proteins related to their interactions.
Collapse
|
11
|
Huang P, Wang J, Li Y, Wang Q, Huang Z, Qian H, Liu XH, Lin FC, Lu J. Transcription factors Vrf1 and Hox7 coordinately regulate appressorium maturation in the rice blast fungus Magnaporthe oryzae. Microbiol Res 2022; 263:127141. [DOI: 10.1016/j.micres.2022.127141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
|
12
|
Cong J, Xiao K, Jiao W, Zhang C, Zhang X, Liu J, Zhang Y, Pan H. The Coupling Between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:816091. [PMID: 35547112 PMCID: PMC9081980 DOI: 10.3389/fmicb.2022.816091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
The plant pathogenic fungus Sclerotinia sclerotiorum can survive on a wide range of hosts and cause significant losses on crop yields. FKH, a forkhead box (FOX)-containing protein, functions to regulate transcription and signal transduction. As a transcription factor (TF) with multiple biological functions in eukaryotic organisms, little research has been done on the role of FKH protein in pathogenic fungi. SsFkh1 encodes a protein which has been predicted to contain FOX domain in S. sclerotiorum. In this study, the deletion mutant of SsFkh1 resulted in severe defects in hyphal development, virulence, and sclerotia formation. Moreover, knockout of SsFkh1 lead to gene functional enrichment in mitogen-activated protein kinase (MAPK) signaling pathway in transcriptome analysis and SsFkh1 was found to be involved in the maintenance of the cell wall integrity (CWI) and the MAPK signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SsFkh1 interacts with SsMkk1. In addition, we explored the conserved MAPK signaling pathway components, including Bck1, Mkk1, Pkc1, and Smk3 in S. sclerotiorum. ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3knockout mutant strains together with ΔSsmkk1com, ΔSspkc1com, ΔSsbck1com, and ΔSssmk3com complementation mutant strains were obtained. The results indicated that ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3 displayed similar phenotypes to ΔSsfkh1 in sclerotia formation, compound appressorium development, and pathogenicity. Taken together, SsFkh1 may be the downstream substrate of SsMkk1 and involved in sclerotia formation, compound appressorium development, and pathogenicity in S. sclerotiorum.
Collapse
Affiliation(s)
- Jie Cong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Cheng Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Jiao W, Yu H, Cong J, Xiao K, Zhang X, Liu J, Zhang Y, Pan H. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:204-217. [PMID: 34699137 PMCID: PMC8743022 DOI: 10.1111/mpp.13154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum, the notorious necrotrophic phytopathogenic fungus with wide distribution, is responsible for sclerotium disease in more than 600 plant species, including many economic crops such as soybean, oilseed rape, and sunflower. The compound appressorium is a crucial multicellular infection structure that is a prerequisite for infecting healthy tissues. Previously, the Forkhead-box family transcription factors (FOX TFs) SsFoxE2 and SsFKH1 were shown to play a key regulatory role in the hyphae growth, sexual reproduction, and pathogenicity of S. sclerotiorum. However, little is known about the roles of SsFoxE3 regulating growth and development and pathogenicity. Here, we report SsFoxE3 contributes to sclerotium formation and deletion of SsFoxE3 leads to reduced formation of compound appressoria and developmental delays. Transcripts of SsFoxE3 were greatly increased during the initial stage of infection and SsFoxE3 deficiency reduced virulence on the host, while stabbing inoculation could partially restore pathogenicity. The SsFoxE3 mutant showed sensitivity to H2 O2 , and the expression of reactive oxygen species detoxification and autophagy-related genes were reduced. Moreover, expression of SsAtg8 was also decreased during the infection process of the SsFoxE3 mutant. Yeast 1-hybrid tests suggested that SsFoxE3 interacted with the promoter of SsAtg8. Disruption of SsAtg8 resulted in a phenotype similar to that of the SsFoxE3 mutant. Comparative analysis of the level of autophagy in the wild type and SsFoxE3 mutant showed that N starvation-induced autophagy was reduced in the SsFoxE3 mutant. Taken together, our findings indicate that SsFoxE3 plays an important role in compound appressorium formation and is involved in transcriptional activation of SsAtg8 during infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Huilin Yu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jie Cong
- College of Plant SciencesJilin UniversityChangchunChina
| | - Kunqin Xiao
- College of Plant SciencesJilin UniversityChangchunChina
| | | | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|
14
|
Fu T, Han JH, Shin JH, Song H, Ko J, Lee YH, Kim KT, Kim KS. Homeobox Transcription Factors Are Required for Fungal Development and the Suppression of Host Defense Mechanisms in the Colletotrichum scovillei-Pepper Pathosystem. mBio 2021; 12:e0162021. [PMID: 34425710 PMCID: PMC8406175 DOI: 10.1128/mbio.01620-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
Colletotrichum scovillei, an ascomycete phytopathogenic fungus, is the main causal agent of serious yield losses of economic crops worldwide. The fungus causes anthracnose disease on several fruits, including peppers. However, little is known regarding the underlying molecular mechanisms involved in the development of anthracnose caused by this fungus. In an initial step toward understanding the development of anthracnose on pepper fruits, we retrieved 624 transcription factors (TFs) from the whole genome of C. scovillei and comparatively analyzed the entire repertoire of TFs among phytopathogenic fungi. Evolution and proliferation of members of the homeobox-like superfamily, including homeobox (HOX) TFs that regulate the development of eukaryotic organisms, were demonstrated in the genus Colletotrichum. C. scovillei was found to contain 10 HOX TF genes (CsHOX1 to CsHOX10), which were functionally characterized using deletion mutants of each CsHOX gene. Notably, CsHOX1 was identified as a pathogenicity factor required for the suppression of host defense mechanisms, which represents a new role for HOX TFs in pathogenic fungi. CsHOX2 and CsHOX7 were found to play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study provides a molecular basis for understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid in the development of novel approaches for disease management. IMPORTANCE The ascomycete phytopathogenic fungus, Colletotrichum scovillei, causes serious yield loss on peppers. However, little is known about molecular mechanisms involved in the development of anthracnose caused by this fungus. We analyzed whole-genome sequences of C. scovillei and isolated 624 putative TFs, revealing the existence of 10 homeobox (HOX) transcription factor (TF) genes. We found that CsHOX1 is a pathogenicity factor required for the suppression of host defense mechanism, which represents a new role for HOX TFs in pathogenic fungi. We also found that CsHOX2 and CsHOX7 play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study contributes to understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid for initiating novel approaches for disease management.
Collapse
Affiliation(s)
- Teng Fu
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Joon-Hee Han
- Department of Research and Development, Chuncheon Bioindustry Foundation, Chuncheon, South Korea
| | - Jong-Hwan Shin
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Hyeunjeong Song
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, South Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
15
|
HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana. mSystems 2020; 5:5/5/e00695-20. [PMID: 33051379 PMCID: PMC7567583 DOI: 10.1128/msystems.00695-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi. In pathogenic filamentous fungi, conidial germination not only is fundamental for propagation in the environment but is also a critical step of infection. In the insect mycopathogen Beauveria bassiana, we genetically characterized the role of the basic leucine zipper (bZIP) transcription factor HapX (BbHapX) in conidial nutrient reserves and pathogen-host interaction. Ablation of BbHapX resulted in an almost complete loss of virulence in the topical inoculation and intrahemocoel injection assays. Comparative transcriptomic analysis revealed that BbHapX is required for fatty acid (FA)/lipid metabolism, and biochemical analyses indicated that BbHapX loss caused a significant reduction in conidial FA contents. Exogenous oleic acid could partially or completely restore the impaired phenotypes of the ΔBbHapX mutant, including germination rate, membrane integrity, vegetative growth, and virulence. BbHapX mediates fungal iron acquisition which is not required for desaturation of stearic acid. Additionally, inactivation of the Δ9-fatty acid desaturase gene (BbOle1) generated defects similar to those of the ΔBbHapX mutant; oleic acid also had significant restorative effects on the defective phenotypes of the ΔBbOle1 mutant. A gel retarding assay revealed that BbHapX directly regulated the expression of BbOle1. Lipidomic analyses indicated that both BbHapX and BbOle1 contributed to the homeostasis of phospholipids with nonpolar tails derived from oleic acid; therefore, exogenous phospholipids could significantly restore membrane integrity. These data reveal that the HapX-Ole1 pathway contributes to conidial fatty acid/lipid reserves and that there are important links between the lipid biology and membrane functionality involved in the early stages of infection caused by B.bassiana. IMPORTANCE Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi.
Collapse
|
16
|
Fu T, Park GC, Han JH, Shin JH, Park HH, Kim KS. MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2019; 35:564-574. [PMID: 31832037 PMCID: PMC6901248 DOI: 10.5423/ppj.oa.07.2019.0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyoung Su Kim
- Corresponding author.: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
17
|
Shin JH, Han JH, Park HH, Fu T, Kim KS. Optimization of Polyethylene Glycol-Mediated Transformation of the Pepper Anthracnose Pathogen Colletotrichum scovillei to Develop an Applied Genomics Approach. THE PLANT PATHOLOGY JOURNAL 2019; 35:575-584. [PMID: 31832038 PMCID: PMC6901253 DOI: 10.5423/ppj.oa.06.2019.0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/30/2019] [Indexed: 05/09/2023]
Abstract
Colletotrichum acutatum is a species complex responsible for anthracnose disease in a wide range of host plants. Strain C. acutatum KC05, which was previously isolated from an infected pepper in Gangwon Province of South Korea, was reidentified as C. scovillei using combined sequence analyses of multiple genes. As a prerequisite for understanding the pathogenic development of the pepper anthracnose pathogen, we optimized the transformation system of C. scovillei KC05. Protoplast generation from young hyphae of KC05 was optimal in an enzymatic digestion using a combined treatment of 2% lysing enzyme and 0.8% driselase in 1 M NH4Cl for 3 h incubation. Prolonged incubation for more than 3 h decreased protoplast yields. Protoplast growth of KC05 was completely inhibited for 4 days on regeneration media containing 200 μg/ml hygromycin B, indicating the viability of this antibiotic as a selection marker. To evaluate transformation efficiency, we tested polyethylene glycol-mediated protoplast transformation of KC05 using 19 different loci found throughout 10 (of 27) scaffolds, covering approximately 84.1% of the entire genome. PCR screening showed that the average transformation efficiency was about 17.1% per 100 colonies. Southern blot analyses revealed that at least one transformant per locus had single copy integration of PCR-screened positive transformants. Our results provide valuable information for a functional genomics approach to the pepper anthracnose pathogen C. scovillei.
Collapse
Affiliation(s)
| | | | | | | | - Kyoung Su Kim
- Corresponding author.: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
18
|
Shin JH, Gumilang A, Kim MJ, Han JH, Kim KS. A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae. MYCOBIOLOGY 2019; 47:473-482. [PMID: 32010469 PMCID: PMC6968698 DOI: 10.1080/12298093.2019.1689037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Adiyantara Gumilang
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Moon-Jong Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Joon-Hee Han
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
19
|
Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci Rep 2018; 8:14461. [PMID: 30262874 PMCID: PMC6160453 DOI: 10.1038/s41598-018-32633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Collapse
|
20
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
21
|
Motaung TE, Saitoh H, Tsilo TJ. Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis. MOLECULAR PLANT PATHOLOGY 2017; 18:754-764. [PMID: 27733021 PMCID: PMC6638310 DOI: 10.1111/mpp.12497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 05/31/2023]
Abstract
Plant-pathogenic fungi cause diseases to all major crop plants world-wide and threaten global food security. Underpinning fungal diseases are virulence genes facilitating plant host colonization that often marks pathogenesis and crop failures, as well as an increase in staple food prices. Fungal molecular genetics is therefore the cornerstone to the sustainable prevention of disease outbreaks. Pathogenicity studies using mutant collections provide immense function-based information regarding virulence genes of economically relevant fungi. These collections are rich in potential targets for existing and new biological control agents. They contribute to host resistance breeding against fungal pathogens and are instrumental in searching for novel resistance genes through the identification of fungal effectors. Therefore, functional analyses of mutant collections propel gene discovery and characterization, and may be incorporated into disease management strategies. In the light of these attributes, mutant collections enhance the development of practical solutions to confront modern agricultural constraints. Here, a critical review of mutant collections constructed by various laboratories during the past decade is provided. We used Magnaporthe oryzae and Fusarium graminearum studies to show how mutant screens contribute to bridge existing knowledge gaps in pathogenicity and fungal-host interactions.
Collapse
Affiliation(s)
- Thabiso E. Motaung
- Agricultural Research Council ‐ Small Grain InstitutePrivate Bag X29Bethlehem9700South Africa
| | - Hiromasa Saitoh
- Iwate Biotechnology Research Center22‐174‐4 NaritaKitakamiIwate024‐0003Japan
| | - Toi J. Tsilo
- Agricultural Research Council ‐ Small Grain InstitutePrivate Bag X29Bethlehem9700South Africa
- Department of Life and Consumer SciencesUniversity of South AfricaPO Box 392Pretoria0003South Africa
| |
Collapse
|
22
|
Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H. The Sclerotinia sclerotiorum FoxE2 Gene Is Required for Apothecial Development. PHYTOPATHOLOGY 2016; 106:484-490. [PMID: 26756829 DOI: 10.1094/phyto-08-15-0181-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sclerotinia sclerotiorum is a widely dispersed plant pathogenic fungus causing many diseases such as white mold, Sclerotinia stem rot, stalk rot, and Sclerotinia head rot on many varieties of broadleaf crops worldwide. Previous studies have shown that the Forkhead-box transcription factors (FOX TFs) play key regulatory roles in the sexual reproduction of some fungi. Ss-FoxE2 is one of four FOX TF family member genes in S. sclerotiorum. Based on ortholog function in other fungi it is hypothesized to function in S. sclerotiorum sexual reproduction. In this study, the role of Ss-FoxE2 in S. sclerotiorum was identified with a gene knock-out strategy. Following transformation and screening, strains having undergone homologous recombination in which the hygromycin resistance gene replaced the gene Ss-FoxE2 from the genomic DNA were identified. No difference in hyphae growth, number, and weight of sclerotia and no obvious change in virulence was observed among the wild type Ss-FoxE2 knock-out mutant and genetically complemented mutant; however, following induction of sclerotia for sexual development, apothecia were not formed in Ss-FoxE2 knock-out mutant. The Ss-FoxE2 gene expressed significantly higher in the apothecial stages than in other developmental stages. These results indicate that Ss-FoxE2 appears to be necessary for the regulation of sexual reproduction, but may not affect the pathogenicity and vegetative development of S. sclerotiorum significantly.
Collapse
Affiliation(s)
- Lu Wang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanzhi Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062
| |
Collapse
|
23
|
Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015; 17:4672-89. [PMID: 26248223 DOI: 10.1111/1462-2920.13010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
Conidiation and appressorium differentiation are key processes for polycyclic dissemination and infection in many pathogens. Our previous study using DNA microarray led to the discovery of the MoYAK1 gene in Magnaporthe oryzae that is orthologous to YAK1 in Saccharomyces cerevisiae. Although the mechanistic roles of YAK1 in S. cerevisiae have been described, roles of MoYAK1 in M. oryzae, a phytopathogenic fungus responsible for rice blast, remain uncharacterized. Targeted disruption of MoYAK1 results in pleiotropic defects in M. oryzae development and pathogenicity. The ΔMoyak1 mutant exhibits a severe reduction in aerial hyphal formation and conidiation. Conidia in the ΔMoyak1 are delayed in germination and demonstrate decreased glycogen content in a conidial age-dependent manner. The expression of hydrophobin-coding genes is dramatically changed in the ΔMoyak1 mutant, leading to a loss of surface hydrophobicity. Unlike the complete inability of the ΔMoyak1 mutant to develop appressoria on an inductive surface, the mutant forms appressoria of abnormal morphology in response to exogenous cyclic adenosine-5'-monophosphate and host-driven signals, which are all defective in penetrating host tissues due to abnormalities in glycogen and lipid metabolism, turgor generation and cell wall integrity. These data indicate that MoYAK1 is a protein kinase important for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Joon-Hee Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hye-Min Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong-Hwan Shin
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,BioHerb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| |
Collapse
|
24
|
Choi J, Chung H, Lee GW, Koh SK, Chae SK, Lee YH. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae. PLoS One 2015; 10:e0134939. [PMID: 26241858 PMCID: PMC4524601 DOI: 10.1371/journal.pone.0134939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen in the rice-growing area. This fungus has a biotrophic phase early in infection and later switches to a necrotrophic lifestyle. During the biotrophic phase, the fungus competes with its host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified that 1,047 genes were up-regulated in response to hypoxia. Those genes are involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms, and are well-conserved among three fungal species. In addition, null mutants of two hypoxia-responsive genes were generated and their roles in fungal development and pathogenicity tested. The mutant for the sterol regulatory element-binding protein gene, MoSRE1, exhibited increased sensitivity to a hypoxia-mimicking agent, increased conidiation, and delayed invasive growth within host cells, which is suggestive of important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant, for the alcohol dehydrogenase gene MoADH1, showed no defect in the hypoxia-mimicking condition (using cobalt chloride) and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxic condition with experimental validations would provide new insights into fungal development and pathogenicity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
| | - Gir-Won Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Sun-Ki Koh
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151–921, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
25
|
Domínguez-Santos R, García-Estrada C, Kosalková K, Prieto C, Santamarta I, Martín JF. PcFKH1, a novel regulatory factor from the forkhead family, controls the biosynthesis of penicillin in Penicillium chrysogenum. Biochimie 2015; 115:162-76. [PMID: 26049046 DOI: 10.1016/j.biochi.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
Penicillin biosynthesis in Penicillium chrysogenum (re-identified as Penicillium rubens) is a good example of a biological process subjected to complex global regulatory networks and serves as a model to study fungal secondary metabolism. The winged-helix family of transcription factors recently described, which includes the forkhead type of proteins, is a key type of regulatory proteins involved in this process. In yeasts and humans, forkhead transcription factors are involved in different processes (cell cycle regulation, cell death control, pre-mRNA processing and morphogenesis); one member of this family of proteins has been identified in the P. chrysogenum genome (Pc18g00430). In this work, we have characterized this novel transcription factor (named PcFKH1) by generating knock-down mutants and overexpression strains. Results clearly indicate that PcFKH1 positively controls antibiotic biosynthesis through the specific interaction with the promoter region of the penDE gene, thus regulating penDE mRNA levels. PcFKH1 also binds to the pcbC promoter, but with low affinity. In addition, it also controls other ancillary genes of the penicillin biosynthetic process, such as phlA (encoding phenylacetyl CoA ligase) and ppt (encoding phosphopantetheinyl transferase). PcFKH1 also plays a role in conidiation and spore pigmentation, but it does not seem to be involved in hyphal morphology or cell division in the improved laboratory reference strain Wisconsin 54-1255. A genome-wide analysis of processes putatively coregulated by PcFKH1 and PcRFX1 (another winged-helix transcription factor) in P. chrysogenum provided evidence of the global effect of these transcription factors in P. chrysogenum metabolism.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain; INBIOTEC, Instituto de Biotecnología de León, Avda. Real nº. 1, Parque Científico de León, 24006, León, Spain
| | - Carlos García-Estrada
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real nº. 1, Parque Científico de León, 24006, León, Spain.
| | - Katarina Kosalková
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real nº. 1, Parque Científico de León, 24006, León, Spain
| | - Carlos Prieto
- Unidad de Bioinformática, Servicio NUCLEUS de Apoyo a la Investigación, Universidad de Salamanca (USAL), Edificio I+D+i, Calle Espejo, 2, 37007, Salamanca, Spain
| | - Irene Santamarta
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real nº. 1, Parque Científico de León, 24006, León, Spain
| | - Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
26
|
Shin JH, Han JH, Kim KS. Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|