1
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
2
|
Pearce R, Conrady B, Guardabassi L. Prevalence and Types of Extended-Spectrum β-Lactamase-Producing Bacteria in Retail Seafood. Foods 2023; 12:3033. [PMID: 37628032 PMCID: PMC10453871 DOI: 10.3390/foods12163033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-producing bacteria in retail seafood. Methods: A literature review was completed according to international guidelines for systematic reviews, except for being performed by a single reviewer. Kruskal-Wallis and Dunn tests were used to determine statistical differences between continents or seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant to the review's objectives. The median prevalence of ESBL-contaminated products was 19.4%. A significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive. The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6% and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales, where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| |
Collapse
|
3
|
Young KM, Isada MJ, Reist M, Uhland FC, Sherk LM, Carson CA. A scoping review of the distribution and frequency of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in shrimp and salmon. Epidemiol Infect 2022; 151:e1. [PMID: 36606359 PMCID: PMC9990388 DOI: 10.1017/s0950268822001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial-resistant (AMR) bacteria are a threat to public health as they can resist treatment and pass along genetic material that allows other bacteria to become drug-resistant. To assess foodborne AMR risk, the Codex Guidelines for Risk Analysis of Foodborne AMR provide a framework for risk profiles and risk assessments. Several elements of a risk profile may benefit from a scoping review (ScR). To contribute to a larger risk profile structured according to the Codex Guidelines, our objective was to conduct a ScR of the current state of knowledge on the distribution, frequency and concentrations of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in salmon and shrimp. Articles were identified via a comprehensive search of five bibliographic databases. Two reviewers screened titles and abstracts for relevance and characterised full-text articles with screening forms developed a priori. Sixteen relevant studies were identified. This review found that there is a lack of Canadian data regarding ESBL-producing Enterobacteriaceae in salmon and shrimp. However, ESBL- producing Escherichia coli, Klebsiella pneumoniae and other Enterobacteriaceae have been isolated in multiple regions with a history of exporting seafood to Canada. The literature described herein will support future decision-making on this issue as research/surveillance and subsequent assessments are currently lacking.
Collapse
Affiliation(s)
- K. M. Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - M. J. Isada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - M. Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - F. C. Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - L. M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - C. A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Dehkordi SMH, Anvar SA, Rahimi E, Ahari H, Ataee M. Molecular investigation of prevalence, phenotypic and genotypic diversity, antibiotic resistance, frequency of virulence genes and genome sequencing in Pseudomonas aeruginosa strains isolated from lobster. Int J Food Microbiol 2022; 382:109901. [DOI: 10.1016/j.ijfoodmicro.2022.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
5
|
Janecko N, Bloomfield SJ, Palau R, Mather AE. Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail. Microb Genom 2021; 7. [PMID: 34586050 PMCID: PMC8715430 DOI: 10.1099/mgen.0.000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae. Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus, though multiple resistance genes were also identified in V. cholerae and V. vulnificus. This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|