1
|
Kong Y, Zhao S, Ou W, Mai K, Zhang Y. The Combination of Host-Associated Bacillus megaterium R32 and Stachyose Promotes the Intestinal Health of Turbot ( Scophthalmus maximus. L). AQUACULTURE NUTRITION 2024; 2024:8658386. [PMID: 39555546 PMCID: PMC11458268 DOI: 10.1155/2024/8658386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/25/2024] [Accepted: 09/06/2024] [Indexed: 11/19/2024]
Abstract
An 8-week feeding trial was conducted to investigate the effects of host-associated Bacillus megaterium R32 and stachyose on the intestinal mucosal defense system of turbot (Scophthalmus maximus. L). Three isonitrogenous and isolipidic diets were formulated: control diet (C), control diet with 1.0 × 108 CFU/g B. megaterium R32 (RC), and 1.0 × 108 CFU/g B. megaterium R32 + 1.5% stachyose (RS) supplementation separately. The results showed that diets RS and RC significantly inhibited the expression of cell development and apoptosis-related genes (β-catenin, CyclinD1, BAX, Bid); diets RS and RC significantly increased the expression of intestinal tight junction protein claudin-4, while RS group significantly decreased the expression of myosin light chain kinase; diets RS and RC significantly decreased the expression of proinflammatory factors (IL-13, IL-15, IFN- γ), diet RS also significantly decreased the expression of TNF-α and AP-1, and increased the expression of TGF-β. 16s rRNA gene sequencing results showed that diets RS and RC significantly decreased the abundance of conditional pathogenic bacteria (Corynebacterium, Desulfovibrio, Escherichia-Shigella). Among them, the abundance of Bacillus in the RS group was the highest. It is concluded that the combination of stachyose and B. megaterium R32 had a more positive effect on intestinal cell development and barrier function and strengthened the intestinal mucosal defense system of turbot.
Collapse
Affiliation(s)
- Yaoyao Kong
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education)Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Sifan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education)Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education)Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education)Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education)Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Ji Y, Xie Q, Meng X, Wang W, Li S, Lang X, Zhao C, Yuan Y, Ye H. Lactobacillus paracasei improves dietary fatty liver by reducing insulin resistance and inflammation in obese mice model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Beilner D, Kuhn C, Kost BP, Vilsmaier T, Vattai A, Kaltofen T, Mahner S, Schmoeckel E, Dannecker C, Jückstock J, Mayr D, Jeschke U, Heidegger HH. Nuclear receptor corepressor (NCoR) is a positive prognosticator for cervical cancer. Arch Gynecol Obstet 2021; 304:1307-1314. [PMID: 33861372 PMCID: PMC8490237 DOI: 10.1007/s00404-021-06053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
Purpose Enzymes with epigenetic functions play an essential part in development of cancer. However, the significance of epigenetic changes in cervical carcinoma as a prognostic factor has not been fully investigated. Nuclear receptor corepressor (NCoR) presents itself as a potentially important element for epigenetic modification and as a potential prognostic aspect in cervical cancer. Methods By immunohistochemical staining of 250 tumor samples, the expression strength of NCoR was measured and evaluated by immunoreactive score (IRS) in the nucleus and cytoplasm. Results A low expression of NCoR in our patients was a disadvantage in overall survival. Expression of NCoR was negatively correlated with viral oncoprotein E6, acetylated histone H3 acetyl K9 and FIGO status, and positively correlated to p53. Conclusions Our study has identified epigenetic modification of tumor cells thus seems to be of relevance in cervical cancer as well for diagnosis, as a marker or as a potential therapeutic target in patients with advanced cervical carcinoma.
Collapse
Affiliation(s)
- Daniel Beilner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Bernd P Kost
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Julia Jückstock
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany. .,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| |
Collapse
|
4
|
Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients. Int J Mol Sci 2021; 22:ijms22052442. [PMID: 33671013 PMCID: PMC7957482 DOI: 10.3390/ijms22052442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is primarily caused by the infection of high-risk human papillomavirus (hrHPV). Moreover, tumor immune microenvironment plays a significant role in the tumorigenesis of cervical cancer. Therefore, it is necessary to comprehensively identify predictive biomarkers from immunogenomics associated with cervical cancer prognosis. The Cancer Genome Atlas (TCGA) public database has stored abundant sequencing or microarray data, and clinical data, offering a feasible and reliable approach for this study. In the present study, gene profile and clinical data were downloaded from TCGA, and the Immunology Database and Analysis Portal (ImmPort) database. Wilcoxon-test was used to compare the difference in gene expression. Univariate analysis was adopted to identify immune-related genes (IRGs) and transcription factors (TFs) correlated with survival. A prognostic prediction model was established by multivariate cox analysis. The regulatory network was constructed and visualized by correlation analysis and Cytoscape, respectively. Gene functional enrichment analysis was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 204 differentially expressed IRGs were identified, and 22 of them were significantly associated with the survival of cervical cancer. These 22 IRGs were actively involved in the JAK-STAT pathway. A prognostic model based on 10 IRGs (APOD, TFRC, GRN, CSK, HDAC1, NFATC4, BMP6, IL17RD, IL3RA, and LEPR) performed moderately and steadily in squamous cell carcinoma (SCC) patients with FIGO stage I, regardless of the age and grade. Taken together, a risk score model consisting of 10 novel genes capable of predicting survival in SCC patients was identified. Moreover, the regulatory network of IRGs associated with survival (SIRGs) and their TFs provided potential molecular targets.
Collapse
|