1
|
Guerra-Andrés M, Fernández ÁF, Fontanil T. Exosomes, autophagy, and cancer: A complex triad. Int J Cancer 2025. [PMID: 40318053 DOI: 10.1002/ijc.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Despite remarkable progress in prevention, diagnosis, and therapy, the incidence of certain types of cancer persists, urging the identification of clinically relevant biomarkers and the development of novel therapeutic strategies to improve clinical outcomes and overcome treatment resistance. Exosomes, small extracellular vesicles released by diverse types of cells, have attracted interest in biomedical research due to their potential as carriers for different treatments. Moreover, exosomes play a pivotal role in intercellular communication, modulating various cellular processes. One of those is autophagy, a pro-survival pathway that is essential for human cells. Even though autophagy is traditionally described as a catabolic route, its machinery is intricately involved in various cellular responses, including vesicle formation and secretion. In this regard, the link between autophagy and exosomes is complex, bidirectional, and highly dependent on the cellular context. Interestingly, both processes have been extensively implicated in cancer pathogenesis, highlighting their potential as therapeutic targets. This review updates our understanding of how exosomes can participate in cancer development and progression, with a specific focus on their influence on tumor growth, angiogenesis, and metastasis. Additionally, the interplay between these extracellular vesicles and autophagy is minutely reviewed and discussed, as we hypothesize that this crosstalk may hold valuable clues for biomarker discovery and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Guerra-Andrés
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Tania Fontanil
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Ordoñez (Astracime S.L), Oviedo, Spain
- Lovinium Biocell CO LTD., Bangkok, Thailand
| |
Collapse
|
2
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
3
|
Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, Duan Y, Deng H, Xiong W, Tang F, Li G, Zhou M. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol 2023; 13:1122110. [PMID: 37081988 PMCID: PMC10110844 DOI: 10.3389/fonc.2023.1122110] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the “soil” of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- MengNa Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - JianXia Wei
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - ChangNing Xue
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - XiangTing Zhou
- The First Clinical College of Changsha Medical University, Changsha, China
| | - ShiPeng Chen
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - LeMei Zheng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - YuMei Duan
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - HongYu Deng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - FaQing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - GuiYuan Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Ming Zhou,
| |
Collapse
|
4
|
Li M, Zhang X, Wang M, Wang Y, Qian J, Xing X, Wang Z, You Y, Guo K, Chen J, Gao D, Zhao Y, Zhang L, Chen R, Cui J, Ren Z. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun (Lond) 2022; 42:1162-1184. [PMID: 36181398 PMCID: PMC9648387 DOI: 10.1002/cac2.12364] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite integrin being highlighted as a stiffness-sensor molecule in matrix stiffness-driven angiogenesis, other stiffness-sensor molecules and their mechanosensory pathways related to angiogenesis in hepatocellular carcinoma (HCC) remain obscure. Here, we explored the interplay between Piezo1 and integrin β1 in the mechanosensory pathway and their effects on HCC angiogenesis to better understand matrix stiffness-induced angiogenesis. METHODS The role of Piezo1 in matrix stiffness-induced angiogenesis was investigated using orthotopic liver cancer SD rat models with high liver stiffness background, and its clinical significance was evaluated in human HCC tissues. Matrix stiffness-mediated Piezo1 upregulation and activation were assayed using an in vitro fibronectin (FN)-coated cell culture system with different stiffness, Western blotting and Ca2+ probe. The effects of shPiezo1-conditioned medium (CM) on angiogenesis were examined by tube formation assay, wound healing assay and angiogenesis array. The underlying mechanism by which Piezo1 participated in matrix stiffness-induced angiogenesis was analyzed by microRNA quantitative real-time polymerase chain reaction (qRT-PCR), matrix stiffness measurement, dual-luciferase reporter assay, ubiquitination assay and co-immunoprecipitation. RESULTS Increased matrix stiffness significantly upregulated Piezo1 expression at both cellular and tissue levels, and high expression of Piezo1 indicated an unfavorable prognosis. High matrix stiffness also noticeably enhanced the activation level of Piezo1, similar to its expression level. Piezo1 knockdown significantly suppressed tumor growth, angiogenesis, and lung metastasis of HCC rat models with high liver stiffness background. shPiezo1-CM from HCC cells attenuated tube formation and migration abilities of vascular endothelial cells remarkably, and analysis of differentially expressed pro-angiogenic factors revealed that Piezo1 promoted the expression and secretion of vascular endothelial growth factor (VEGF), CXC chemokine ligand 16 (CXCL16) and insulin-like growth factor binding protein 2 (IGFBP2). Matrix stiffness-caused Piezo1 upregulation/activation restrained hypoxia inducible factor-1α (HIF-1α) ubiquitination, subsequently enhanced the expression of downstream pro-angiogenic factors to accelerate HCC angiogenesis. Besides, collagen 1 (COL1)-reinforced tissue stiffening resulted in more expression of Piezo1 via miR-625-5p. CONCLUSIONS This study unravels a new mechanism by which the integrin β1/Piezo1 activation/Ca2+ influx/HIF-1α ubiquitination/VEGF, CXCL16 and IGFBP2 pathway participates in matrix stiffness-driven HCC angiogenesis. Simultaneously, a positive feedback regulation loop as stiff matrix/integrin β1/miR-625-5p/Piezo1 and COL1/stiffer matrix mediates matrix stiffness-caused Piezo1 upregulation.
Collapse
Affiliation(s)
- Miao Li
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Xi Zhang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Mimi Wang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Yaohui Wang
- Department of RadiologyShanghai Cancer CenterFudan UniversityShanghai200032P. R. China
| | - Jiali Qian
- Department of EndocrinologyHuashan HospitalFudan UniversityShanghai200032P. R. China
| | - Xiaoxia Xing
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Zhiming Wang
- Department of OncologyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yang You
- Department of OncologyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Kun Guo
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Jie Chen
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Dongmei Gao
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Yan Zhao
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Lan Zhang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Rongxin Chen
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Jiefeng Cui
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Zhenggang Ren
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| |
Collapse
|
5
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Taghizadeh E, Tazik K, Taheri F, Shayankia G, Gheibihayat SM, Saberi A. Abnormal angiogenesis associated with HIF-1α/VEGF signaling pathway in recurrent miscarriage along with therapeutic goals. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Wang Z, Wang X, Bi M, Hu X, Wang Q, Liang H, Liu D. Effects of the histone acetylase inhibitor C646 on growth and differentiation of adipose-derived stem cells. Cell Cycle 2021; 20:392-405. [PMID: 33487075 DOI: 10.1080/15384101.2021.1876389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
As an important histone acetylase, the transcriptional coactivator P300/CBP affects target gene expression and plays a role in the maintenance of stem cell characteristics and differentiation potential. In this study, we explored the action of a highly effective selective histone acetylase inhibitor, C646, on goat adipose-derived stem cells (gADSCs), and investigated the impact of histone acetylation on the growth characteristics and the differentiation potential of ADSCs. We found that C646 blocked the cell proliferation, arrested the cell cycle, and triggered apoptosis. Notably, immunocytochemistry and western blot analyses showed that the acetylation level of histone H3K9 was increased. Moreover, although real-time quantitative PCR and western blot confirmed that P300 expression was inhibited under these conditions, the expression level of two other histone acetylases, TIP60 and PCAF, was significantly increased. Furthermore, C646 clearly promoted the differentiation of gADSCs into adipocytes and had an impact on their differentiation into neuronal cells. This study provides new insights into the epigenetic regulation of stem cell differentiation and may represent an experimental basis for the comprehension of stem cell characteristics and function. Furthermore, it is of great relevance for the application of adult stem cells to somatic cell cloning, which may improve the efficiency of large livestock cloning and foster the production of transgenic animals.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Meiyu Bi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Qing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| |
Collapse
|
8
|
Sun JL, Zhao LL, He K, Liu Q, Luo J, Zhang DM, Liang J, Liao L, Ma JD, Yang S. MicroRNA regulation in hypoxic environments: differential expression of microRNAs in the liver of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2227-2242. [PMID: 32948974 DOI: 10.1007/s10695-020-00877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Environmental changes in intensive aquaculture commonly lead to hypoxic stress for cultured largemouth bass (Micropterus salmoides). To better to understand the hypoxic stress response mechanisms, the miRNA expression profiles of the livers of largemouth bass exposed for 24 h to three different dissolved oxygen levels (7.0 ± 0.2 mg/L as control, 3.0 ± 0.2 mg/L and 1.2 ± 0.2 mg/L) were compared. In this study, a total of 266 known miRNAs were identified, 84 of which were differentially expressed compared with the control group. Thirteen of the differentially expressed miRNAs (miR-15b-5p, miR-30a-3p, miR-133a-3p, miR-19d-5p, miR-1288-3p, miR456, miR-96-5p, miR-23a-3p, miR-23b-5p, miR-214, miR-24, miR-20a-3p, and miR-2188-5p) were significantly enriched in VEGF signaling pathway, MAPK signaling pathway, and phosphatidylinositol signaling system. These miRNAs were significantly downregulated during stress, especially after a 4-h exposure to hypoxia. In contrast, their target genes (vegfa, pla2g4a, raf1a, pik3c2a, clam2a, inpp1, pi4k2b, mtmr14, ip6k, itpkca, map3k7, and Jun) were significant upregulated after 4 h of hypoxic stress. Moreover, two potential hypoxia-tolerance signal transduction pathways (MAPK signaling pathway and phosphatidylinositol signaling system) were revealed, both of which may play important roles in responding to acute hypoxic stress. We see that miRNAs played an important role in regulating gene expression related to physiological responses to hypoxia. Potential functional network regulated by miRNAs under hypoixic stress in the liver of largemouth bass (Micropterus salmoides). Blue boxes indicated that the expression of miRNA or target genes were down-regulated. Red boxes indicated that the expression of miRNA or target genes wasere up-regulated.
Collapse
Affiliation(s)
- Jun Long Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570228, Hainan, China
| | - Liu Lan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Mei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Deng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Ghoneum A, Abdulfattah AY, Warren BO, Shu J, Said N. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics. Int J Mol Sci 2020; 21:E3100. [PMID: 32354000 PMCID: PMC7247161 DOI: 10.3390/ijms21093100] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Bailey Olivia Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- The Third Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
10
|
CD105 (endoglin) as risk marker in AML patients undergoing stem cell transplantation. Int J Hematol 2020; 112:57-64. [PMID: 32266669 DOI: 10.1007/s12185-020-02875-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Several genetic and molecular markers are general predictors of outcome in acute myeloid leukemia (AML), but only few are predictive of outcomes after allogeneic hematopoietic stem cell transplantation (HSCT). Novel markers are needed to improve treatment decisions regarding HSCT. CD105 (endoglin) is a type I transmembrane protein capable of activating endothelial cells. Moreover, CD105 mediates stem cell properties of hematopoietic stem cells and enables repopulation within the bone marrow. Expression of CD105 on vessels of solid tumors and on AML blasts is correlated with poor prognosis. We recently demonstrated that CD105 expression is an independent predictor of overall survival in AML. However, its role in patients receiving intensive treatment with consecutive allogenic transplantation has not been assessed. Using flow cytometry, we analyzed primary samples of 41 patients who underwent HSCT. Using the previously defined SFI cut-off of 5.2, we identified differences in CD105 expression regarding FAB classification and NCCN risk score. Moreover, we detected differences regarding transplant indication and WHO classification with regards to CD105 surface levels. In patients undergoing HSCT high CD105 expression correlated significantly with poor overall survival. We identify CD105 expression in AML as prognostic marker for outcome after HSCT in AML.
Collapse
|
11
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
12
|
Casadei-Gardini A, Orsi G, Caputo F, Ercolani G. Developments in predictive biomarkers for hepatocellular carcinoma therapy. Expert Rev Anticancer Ther 2020; 20:63-74. [PMID: 31910040 DOI: 10.1080/14737140.2020.1712198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and the third largest cause of cancer-relateddeaths worldwide. Potentially curative treatments (surgical resection, radiofrequency or liver transplantation) are only available for few patients, while transarterial chemoembolization (TACE) or systemic agents are the best treatments for intermediate and advanced stage disease. The identification of markers that allow us to choose the best treatment for the patient is urgent.Areas covered: In this review we summarize the potential biological markers to predict the efficacy of all treatment available in patients with HCC and discuss anew biomarker with ahigher potential of success in the next future.Expert opinion: HCC is aheterogeneous disease. Tumors are heterogeneous in terms of genetic alteration,with spatial heterogeneity in cellular density, necrosis and angiogenesis.This heterogeneity may affect prognosis and treatment. Tumor heterogeneity can be difficult to quantify with traditional imaging due to subjective assessment of images; the same for sampling biopsy, which evaluates only asmall part of the tumor. We think that combining multi-OMICSwith radiomics represents apromising strategy for evaluating tumor heterogenicity and for identifying biomarkers of response and prognosis.
Collapse
Affiliation(s)
- Andrea Casadei-Gardini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orsi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Ercolani
- General and Oncology Surgery, Morgagni-Pierantoni Hospital, Forli, Italy.,Department of Medical & Surgical Sciences-DIMEC, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Abstract
While several genetic and morphological markers are established and serve to guide therapy of acute myeloid leukaemia (AML), there is still profound need to identify additional markers to better stratify patients. CD105 (Endoglin) is a type I transmembrane protein reported to induce activation and proliferation of endothelial cells. In addition, CD105 is expressed in haematological malignancies and the vessels of solid tumours. Here, CD105 associates with unfavourable disease course, but so far no data are available on the prognostic relevance of CD105 in haematological malignancies. We here generated a novel CD105 antibody for analysis of expression and prognostic relevance of CD105 in a cohort of 62 AML patients. Flow cytometric analysis revealed substantial expression in the various AML FAB types, with FAB M3 type displaying significantly lower surface levels. Next we established a cut-off specific fluorescence level of 5.22 using receiver-operating characteristics, which allowed to group patients in cases with CD105lo and CD105hi surface expression and revealed that high CD105 expression correlated significantly with poor overall and progression free survival. In conclusion, we here identify CD105 expression as a novel prognostic marker in AML, which may serve to optimize follow up and treatment decisions for AML patients.
Collapse
|
14
|
Abstract
Fetal development occurs in a relatively hypoxemic environment, and birth represents significant oxidative stress. Premature infants are disadvantaged by a lack of maternal antioxidant transfer and impaired endogenous antioxidant responses. O2 metabolism is essential for life and its biochemical reactions are dynamic, compartmentalized, and difficult to characterize in vivo. There is a growing appreciation for the role of reactive oxygen species in nonpathologic processes, including regulation of cell signaling and mitochondrial function. There are several gaps in the knowledge about the role of reactive oxygen species in normal development and how oxidative stress alters normal signaling and subsequent development.
Collapse
Affiliation(s)
- Trent E Tipple
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA.
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, 176 F Suite 9380, 619 19th Street South, Birmingham, AL 35249-7335, USA
| |
Collapse
|
15
|
Kim A, Ma JY. Isoliquiritin Apioside Suppresses in vitro Invasiveness and Angiogenesis of Cancer Cells and Endothelial Cells. Front Pharmacol 2018; 9:1455. [PMID: 30618749 PMCID: PMC6295464 DOI: 10.3389/fphar.2018.01455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Several components isolated from Glycyrrhizae radix rhizome (GR), including glycyrrhizin, liquiritin, and liquiritigenin, have been shown to induce cancer cell death and inhibit cancer metastasis. Isoliquiritin apioside (ISLA), a component isolated from GR, has been effective for treating tetanic contraction and genotoxicity. However, the effects of ISLA on the metastasis and angiogenesis of malignant cancer cells and endothelial cells (ECs) have not been reported. In this study, we found that up to 100 μM ISLA did not affect cell proliferation but efficiently suppressed the metastatic ability of HT1080 cells, as assessed by scratch-wound migration, Transwell® migration, scratch-wound invasion, Transwell® invasion, and three-dimensional spheroid invasion. ISLA significantly decreased phorbol 12-myristate 13-acetate (PMA)-induced increases in matrix metalloproteinase (MMP) activities and suppressed PMA-induced activation of mitogen-activated protein kinase as well as NF-κB, which are involved in cancer metastasis. In addition, ILSA treatment reduced the production of pro-angiogenic factors in HT1080 cells, including MMP-9, placental growth factor, and vascular endothelial growth factor under normoxia as well as hypoxia conditions, by impairing the hypoxia-inducible factor-1α pathway. We also found that the abilities of human umbilical vein ECs to migrate across the Transwell® and to form tube-like structures were significantly reduced by ISLA treatment. Moreover, using the chorioallantoic membrane assay, vessel formation with or without vascular endothelial growth factor was significantly suppressed by ISLA. These results suggested that ISLA possesses anti-metastatic and anti-angiogenic abilities in malignant cancer cells and ECs, with no cytotoxicity. ISLA may therefore be a safe and effective lead compound to develop anti-cancer drug for limiting the spread of primary tumors to distant organs to form secondary tumors.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
16
|
Wang F, Peng L, Wang Y, Liu X. A Meta-Analysis of Vascular Endothelial Growth Factor for Nasopharyngeal Cancer Prognosis. Front Oncol 2018; 8:486. [PMID: 30430078 PMCID: PMC6220117 DOI: 10.3389/fonc.2018.00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) has been reported to serve as a promising prognostic marker in several cancers. This meta-analysis aims to assess the prognostic significance of VEGF in nasopharyngeal cancer (NPC). Methods: We conducted a systematic literature search of PubMed, Embase, and the Cochrane Library for observational studies published until June, 2018 to identify observational studies on the prognostic effect of tissue VEGF expression or serum VEGF level on the survival of NPC. The primary outcome measure assessed was overall survival (OS). The secondary outcomes included disease-free survival (DFS) or progression-free survival (PFS). Summary hazard ratio (HR) and its 95% confidence interval (95% CI) were derived using a random-effects model. Results: Out of 840 retrieved citations, 16 studies inclusive of 1,345 patients were included in the analysis of tissue VEGF expression and cancer survival. The pooled HRs for OS and DFS in patients with high VEGF expression were 2.07 (95% CI: 1.32–3.25) and 5.99 (95% CI: 2.66–13.48), respectively, with significant heterogeneity between studies (I2 = 79.1% for OS and 50.2% for DFS). Tissue high VEGF expression was not significantly associated with short RFS, PFS, or MFS. Five studies also investigated the prognostic effect between serum VEGF level and patient survival and found that high serum VEGF level was significantly associated with short OS for patients with NPC (HR 2.47, 95% CI 1.16–5.28), but not with short PFS (HR 1.47, 95% CI 0.92–2.35). Conclusions: Determination of tissue VEGF expression and serum VEGF level have the potential to serve as biomarkers and add prognostic information in NPC. Prospective analyses of associated data on VEGF expression and serum VEGF level in large NPC cohorts could be further conducted to advance our understanding of the relationship between VEGF and NPC outcomes.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, China.,Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lisha Peng
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, China.,Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Bhargava P, Kumari A, Putri JF, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress Chaperones 2018; 23:1055-1068. [PMID: 29869000 PMCID: PMC6111076 DOI: 10.1007/s12192-018-0915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 8572, Japan
| | - Anjani Kumari
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
18
|
Lee D, Jang MK, Seo JH, Ryu SH, Kim JA, Chung YH. ARD1/NAA10 in hepatocellular carcinoma: pathways and clinical implications. Exp Mol Med 2018; 50:1-12. [PMID: 30054466 PMCID: PMC6063946 DOI: 10.1038/s12276-018-0106-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a representative example of a malignancy with a poor prognosis, is characterized by high mortality because it is typically in an advanced stage at diagnosis and leaves very little hepatic functional reserve. Despite advances in medical and surgical techniques, there is no omnipotent tool that can diagnose HCC early and then cure it medically or surgically. Several recent studies have shown that a variety of pathways are involved in the development, growth, and even metastasis of HCC. Among a variety of cytokines or molecules, some investigators have suggested that arrest-defective 1 (ARD1), an acetyltransferase, plays a key role in the development of malignancies. Although ARD1 is thought to be centrally involved in the cell cycle, cell migration, apoptosis, differentiation, and proliferation, the role of ARD1 and its potential mechanistic involvement in HCC remain unclear. Here, we review the present literature on ARD1. First, we provide an overview of the essential structure, functions, and molecular mechanisms or pathways of ARD1 in HCC. Next, we discuss potential clinical implications and perspectives. We hope that, by providing new insights into ARD1, this review will help to guide the next steps in the development of markers for the early detection and prognosis of HCC. A protein that is highly expressed in cancer with extensive blood vessel development may provide a potential biomarker for early-stage liver cancer. Liver cancer is often not diagnosed until it is advanced and is also hard to be cured despite of advances in treatment, meaning patients often die from the disease. No tools for early detection or prognosis prediction exist, and scientists are keen to find useful biomarker molecules. Young-Hwa Chung at the University of Ulsan College of Medicine, Asan Medical Center, Seoul, and co-workers in South Korea reviewed recent research into one possible cancer-related protein, arrest-defective 1 (ARD1), known to be highly expressed in certain cancers and possibly associated with poor prognosis. While ARD1 appears to regulate pathways critical to cancer progression and promote cancer cell invasiveness, further in-depth investigations are needed to clarify its specific role in liver cancer.
Collapse
Affiliation(s)
- Danbi Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, Republic of Korea
| | | | - Young-Hwa Chung
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Pharmacologic ascorbate (P-AscH -) suppresses hypoxia-inducible Factor-1α (HIF-1α) in pancreatic adenocarcinoma. Clin Exp Metastasis 2018; 35:37-51. [PMID: 29396728 DOI: 10.1007/s10585-018-9876-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
HIF-1α is a transcriptional regulator that functions in the adaptation of cells to hypoxic conditions; it strongly impacts the prognosis of patients with cancer. High-dose, intravenous, pharmacological ascorbate (P-AscH-), induces cytotoxicity and oxidative stress selectively in cancer cells by acting as a pro-drug for the delivery of hydrogen peroxide (H2O2); early clinical data suggest improved survival and inhibition of metastasis in patients being actively treated with P-AscH-. Previous studies have demonstrated that activation of HIF-1α is necessary for P-AscH- sensitivity. We hypothesized that pancreatic cancer (PDAC) progression and metastasis could be be targeted by P-AscH- via H2O2-mediated inhibition of HIF-1α stabilization. Our study demonstrates an oxygen- and prolyl hydroxylase-independent regulation of HIF-1α by P-AscH-. Additionally, P-AscH- decreased VEGF secretion in a dose-dependent manner that was reversible with catalase, consistent with an H2O2-mediated mechanism. Pharmacological and genetic manipulations of HIF-1α did not alter P-AscH--induced cytotoxicity. In vivo, P-AscH- inhibited tumor growth and VEGF expression. We conclude that P-AscH- suppresses the levels of HIF-1α protein in hypoxic conditions through a post-translational mechanism. These findings suggest potential new therapies specifically designed to inhibit the mechanisms that drive metastases as a part of PDAC treatment.
Collapse
|
20
|
Advanced malignancies treated with a combination of the VEGF inhibitor bevacizumab, anti-EGFR antibody cetuximab, and the mTOR inhibitor temsirolimus. Oncotarget 2018; 7:23227-38. [PMID: 26933802 PMCID: PMC5029622 DOI: 10.18632/oncotarget.7594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bevacizumab and temsirolimus are active agents in advanced solid tumors. Temsirolimus inhibits mTOR in the PI3 kinase/AKT/mTOR pathway as well as CYP2A, which may be a resistance mechanism for cetuximab. In addition, temsirolimus attenuates upregulation of HIF-1α levels, which may be a resistance mechanism for bevacizumab. RESULTS The median age of patients was 60 years (range, 23-80 years). The median number of prior systemic therapies was 3 (range, 1-6). The maximum tolerated dose (MTD) was determined to be bevacizumab 10 mg/kg biweekly, temsirolimus 5 mg weekly and cetuximab 100/75 mg/m2 weekly. Grade 3 or 4 toxicities were seen in 52% of patients with the highest prevalence being hyperglycemia (14%) and hypophosphatemia (14%). Eighteen of the 21 patients were evaluable for response. Three patients were taken off the study before restaging for toxicities. Partial response (PR) was observed in 2/18 patients (11%) and stable disease (SD) lasting ≥ 6 months was observed in 4/18 patients (22%) (total = 6/18 (33%)). In 8 evaluable patients with squamous cell carcinoma of the head and neck (HNSCC) there were partial responses in 2/8 (25%) patients and SD ≥ 6 months in 1/8 (13%) patients (total = 3/8, (38%)). PATIENTS AND METHODS We analyzed safety and responses in 21 patients with advanced solid tumors treated with bevacizumab, cetuximab, and temsirolimus. CONCLUSION The combination of bevacizumab, cetuximab, and temsirolimus showed activity in HNSCC; however, there were numerous toxicities reported, which will require careful management for future clinical development.
Collapse
|
21
|
Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase. Int J Mol Sci 2017; 19:ijms19010053. [PMID: 29295567 PMCID: PMC5796003 DOI: 10.3390/ijms19010053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1.
Collapse
|
22
|
Plasminogen kringle 5 suppresses gastric cancer via regulating HIF-1α and GRP78. Cell Death Dis 2017; 8:e3144. [PMID: 29072683 PMCID: PMC5682690 DOI: 10.1038/cddis.2017.528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/26/2023]
Abstract
Inhibition of tumour angiogenesis has an important role in antitumour therapy. However, a recent study indicates that antiangiogenesis therapy may lead to glucose-related protein 78 (GRP78) associated antiapoptotic resistance. The present study aims to elucidate the dual effects of plasminogen kringle 5 (K5) on tumour angiogenesis and apoptosis induction by targeting hypoxia-inducible factor 1α (HIF-1α) and GRP78. Co-immunoprecipitation and western blotting were used for examining the ubiquitination of HIF-1α and analysing angiogenesis and apoptosis-associated proteins. K5 promoted the sumo/ubiquitin-mediated proteasomal degradation of HIF-1α by upregulating von Hippel-Lindau protein under hypoxia, resulting in the reduction of vascular endothelial growth factor and thus suppressing tumour angiogenesis. Furthermore, K5 decreased GRP78 expression via downregulation of phosphorylated extracellular-regulated protein kinase, leading to caspase-7 cleavage and tumour cell apoptosis. Blocking voltage-dependent anion channel abrogated the effects of K5 on both HIF-1α and GRP78. K5 significantly inhibited the growth of gastric carcinoma xenografts by inhibiting both angiogenesis and apoptosis. The dual effects suggest that K5 might be a promising bio-therapeutic agent in the treatment of gastric cancer, particularly in patients who exhibit the induction of GRP78.
Collapse
|
23
|
An J, Kang Q, Pan YM, Sun W, Wang X, Qi YJ. Clinical significance of HIF-1α expression in gastric malignant transformation in people from high altitude area of Qinghai. Shijie Huaren Xiaohua Zazhi 2017; 25:404-411. [DOI: 10.11569/wcjd.v25.i5.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of hypoxia inducible factor-1α (HIF-1α) in gastric malignant transformation in people from high altitude area of Qinghai, China.
METHODS RT-PCR was used to detect the expression of HIF-1α gene in 7 cell lines and 27 pairs of GC and matched tumor adjacent normal gastric mucosa tissues. Using tissue microarray including 57 normal gastric mucosa tissues, 37 chronic atrophic gastritis tissues, 34 intestinal metaplasia tissues, and 146 gastric cancer (GC) tissues, immunohistochemistry (IHC) was performed to detect the level of HIF-1α protein expression.
RESULTS The expression of HIF-1α at the mRNA level was different in GC cell lines. HIF-1αexpression in AGS, SGC7901, and N87 cells was higher than that in MGC803, BGC823, PAMC82 and MKN45 cells. The level of HIF-1α expression was significantly higher in GC tissues (66.6%, 18/27) compared with normal gastric mucosa tissues (26.3%, 15/57; P < 0.001). IHC data showed that the positive rate of HIF-1α was 64.8% (24/37) in chronic atrophic gastritis tissues, 61.7% (21/34) in intestinal metaplasia tissues, and 56.8% (83/146) in GC tissues, all of which were significantly higher than that in normal tissues (26.3%, 15/57). Expression of HIF-1α was positively associated with age in GC (P < 0.05). Kaplan-Meier analysis showed that patients with a low level of HIF-1α had apparently better survival than those with a high level (P < 0.0001). HIF-1α protein (RR = 3.229, 95%CI: 2.024-5.151) was identified to be an independent risk factor for the outcome of GC patients.
CONCLUSION High HIF-1α expression is associated with gastric malignant transformation and poor prognosis in high altitude areas.
Collapse
|
24
|
Jia Y, Weng Z, Wang C, Zhu M, Lu Y, Ding L, Wang Y, Cheng X, Lin Q, Wu K. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncol Lett 2017; 13:206-214. [PMID: 28123543 PMCID: PMC5245142 DOI: 10.3892/ol.2016.5402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80.
Collapse
Affiliation(s)
- Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai 201318, P.R. China
| | - Chuanying Wang
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Mingjie Zhu
- Department of Pathology, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xianhua Cheng
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Qing Lin
- Department of Radiology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kejin Wu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
- Department of Breast Surgery, Shanghai Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
Angiogenic factors are associated with multiple sclerosis. J Neuroimmunol 2016; 301:88-93. [DOI: 10.1016/j.jneuroim.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
|
26
|
Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway. Sci Rep 2016; 6:34306. [PMID: 27678303 PMCID: PMC5039671 DOI: 10.1038/srep34306] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Erianin is a natural compound found in Dendrobium chrysotoxum Lindl. Diabetic retinopathy (DR) is a serious and common microvascular complication of diabetes. This study aims to investigate the inhibitory mechanism of erianin on retinal neoangiogenesis and its contribution to the amelioration of DR. Erianin blocked high glucose (HG)-induced tube formation and migration in choroid-retinal endothelial RF/6A cells. Erianin inhibited HG-induced vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor 1-alpha (HIF-1α) translocation into nucleus and ERK1/2 activation in RF/6A and microglia BV-2 cells. MEK1/2 inhibitor U0126 blocked HG-induced HIF-1α and ERK1/2 activation in both above two cells. In addition, erianin abrogated VEGF-induced angiogenesis in vitro and in vivo, and also inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and its downstream cRaf-MEK1/2-ERK1/2 and PI3K-AKT signaling pathways in RF/6A cells. Furthermore, erianin reduced the increased retinal vessels, VEGF expression and microglia activation in streptozotocin (STZ)-induced hyperglycemic and oxygen-induced retinopathy (OIR) mice. In conclusion, our results demonstrate that erianin inhibits retinal neoangiogenesis by abrogating HG-induced VEGF expression by blocking ERK1/2-mediated HIF-1α activation in retinal endothelial and microglial cells, and further suppressing VEGF-induced activation of VEGFR2 and its downstream signals in retinal endothelial cells.
Collapse
|
27
|
Wang L, Wise JTF, Zhang Z, Shi X. Progress and prospects of reactive oxygen species in metal carcinogenesis. ACTA ACUST UNITED AC 2016; 2:178-186. [PMID: 27617186 DOI: 10.1007/s40495-016-0061-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carcinogenesis induced by environmental metal exposure is a major public health concern. The exact mechanisms underlying metal carcinogenesis remain elusive. In the past few decades, the relationship between metal induced generation of reactive oxygen species (ROS) and the mechanism of metal carcinogenesis has been established. The carcinogenic process is a very complex one. In the early stage of metal carcinogenesis or cell transformation high levels of ROS are oncogenic by causing DNA damage, genetic instability, epigenetic alteration, and metabolic reprogramming, leading to malignant transformation. In the second stage of metal carcinogenesis or the cancer development of metal-transformed cells, low levels of ROS are carcinogenic by promoting apoptosis resistance. The metal-transformed cells have the property of autophagy deficiency, resulting in accumulation of p62 and constitutive activation of Nrf2, and leading to higher levels of antioxidants, decreased levels of ROS, apoptosis resistance, inflammation, and angiogenesis. This review summarizes the most recent development in the field of metal carcinogenesis with emphasis on the difference in cellular events between early (cell transformation) and late (after cell transformation) stages of metal carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - James T F Wise
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
28
|
Alldredge JK, Tewari KS. Clinical Trials of Antiangiogenesis Therapy in Recurrent/Persistent and Metastatic Cervical Cancer. Oncologist 2016; 21:576-85. [PMID: 27026677 DOI: 10.1634/theoncologist.2015-0393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Treatment options for women with metastatic, persistent, or recurrent cervical cancer are limited and thus the disease portends a poor prognosis. It is critical to understand the pathophysiology of cervical cancer to better delineate therapeutic targets. The development of antiangiogenic therapies and their subsequent analysis in rigorous therapeutic trials have redefined current management strategies and is an exciting area of current exploration. RESULTS Translational trials have furthered the understanding of molecular determinants of angiogenesis. Phase II trials have shown promising trends with developing antiangiogenic therapies. A practice-changing phase III trial has recently been published. Given the potential benefits and different toxicity spectrum compared with standard cytotoxic chemotherapy, antiangiogenic options are under active investigation for this vulnerable patient population. Emerging data are promising for other antiangiogenic-directed therapeutics, as well as cervical cancer molecular biomarkers to guide diagnosis and treatment. CONCLUSION Antiangiogenic therapies have evolved during the past 20 years and remain an exciting area of current exploration. IMPLICATIONS FOR PRACTICE Understanding of the angiogenic microenvironment has furthered understanding of tumor biology and management. Antiangiogenic therapies show promise for women with advanced cervical cancer. A review of the evolution of these biologic agents shows them to be an effective and tolerable management strategy for many patients in this vulnerable population, with exciting future potential.
Collapse
|
29
|
Xie Q, Xie J, Zhong J, Cun X, Lin S, Lin Y, Cai X. Hypoxia enhances angiogenesis in an adipose-derived stromal cell/endothelial cell co-culture 3D gel model. Cell Prolif 2016; 49:236-45. [PMID: 26997164 DOI: 10.1111/cpr.12244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/19/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the influence of hypoxia on angiogenesis in a 3D gel, with co-culturing adipose-derived stromal cells (ASCs) and endothelial cells (ECs). MATERIALS AND METHODS ASCs from green fluorescent protein-labeled mice and ECs from red fluorescent protein-labeled mice were co-cultured in 3D collagen gels at 1:1 ratio, in normal and hypoxic oxygen conditions, and morphology of angiogenesis was observed using confocal laser scanning microscopy. To discover changes in growth factors between monoculture ASCs and ECs, transwell co-cultures of ASCs and ECs were applied. Semi-quantitative PCR was performed to explore mRNA expression of growth factors. RESULTS Enhanced angiogenesis was observed in 3D gels implanted with 1:1 mixture of ASCs and ECs after 7 days hypoxia. Genes including VEGFA/B, EGF-1, HIF-1a, IGF-1, PDGF, TGF-β1 and BMP-2/4 in ECs, both monoculture and co-culture, were significantly enhanced after being cultured under hypoxia. In comparison, genes VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 in ASCs increased. In all, factors VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 increased in both ASCs and ECs after being cultured in hypoxia no matter whether as monoculture or co-culture. CONCLUSIONS Co-culture of ASCs and ECs at 1:1 ratio in a 3D gel under hypoxia promoted angiogenesis. Those growth factors which were increased in both ASCs and ECs, indicate that VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 might be responsible for enhancement in angiogenesis triggered by hypoxia.
Collapse
Affiliation(s)
- Qiang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiangzhu Cun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
30
|
Chen CH, Chuang HC, Lin YT, Fang FM, Huang CC, Chen CM, Lu H, Chien CY. Circulating CD105 shows significant impact in patients of oral cancer and promotes malignancy of cancer cells via CCL20. Tumour Biol 2016; 37:1995-2005. [PMID: 26334621 DOI: 10.1007/s13277-015-3991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022] Open
Abstract
CD105 is rich in endothelium cells and is involved in angiogenesis. Higher microvascular density of tumor is also related to the prognosis in a variety of cancers. In this present study, patients with positive N classification, advanced T classification, advanced TNM stage, extracapsular spread of lymph nodes (ECS), and perineural invasion had significantly higher levels of peripheral vein (pCD105) and venous return from tumor (tCD105) in 71 patients with OSCC compared to 13 healthy volunteers. Those with higher pCD105 or tCD105 levels had significantly poorer 5-year disease-specific survival rate (DDS) and overall survival rate (OS). The tCD105 and pCD105 levels and ECS were the independent prognostic factors by the multivariate analysis according to the Cox regression model in 5-year DDS and OS rate. SAS and SCC4 cells treated with CD105 showed the increase in migration, invasion, and proliferation in vitro and in vivo. Furthermore, CCL20 expression participated in CD105-elicited cell motility in oral cancer cells. In conclusion, higher level of circulating CD105 is related to adverse pathological features among patients with OSCC. It is also a useful marker for evaluating the prognosis and targeting therapeutics of OSCC.
Collapse
Affiliation(s)
- Chang-Han Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Applied Chemistry and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taoyuan, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Mei Chen
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui Lu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan.
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Liu F, Lin B, Liu X, Zhang W, Zhang E, Hu L, Ma Y, Li X, Tang X. ERK Signaling Pathway Is Involved in HPV-16 E6 but not E7 Oncoprotein-Induced HIF-1α Protein Accumulation in NSCLC Cells. Oncol Res 2016; 23:109-18. [PMID: 26931433 PMCID: PMC7838632 DOI: 10.3727/096504015x14496932933610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK)1/2 signaling pathway plays a critical role in regulating tumor angiogenesis. Our previous studies have demonstrated that HPV-16 oncoproteins enhanced hypoxia-inducible factor-1α (HIF-1α) protein accumulation and vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) expression in non-small cell lung cancer (NSCLC) cells, thus contributing to angiogenesis. In this study, we further investigated the role of ERK1/2 signaling pathway in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in NSCLC cells. Our results showed that HPV-16 E6 and HPV-16 E7 oncoproteins promoted the activation of ERK1/2 signaling pathway in A549 and NCI-H460 cells. Moreover, PD98059, a specific inhibitor of ERK1/2, blocked in vitro angiogenesis stimulated by HPV-16 E6 but not E7 oncoprotein. Additionally, HIF-1α protein accumulation and VEGF and IL-8 expression in NSCLC cells induced by HPV-16 E6 but not E7 oncoprotein were significantly inhibited by PD98059. Taken together, our results suggest that ERK1/2 signaling pathway is involved in HPV-16 E6 but not E7 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression in NSCLC cells, leading to the enhanced angiogenesis in vitro.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Flavonoids/administration & dosage
- Gene Expression Regulation, Neoplastic/drug effects
- Human papillomavirus 16/genetics
- Human papillomavirus 16/pathogenicity
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- MAP Kinase Signaling System/drug effects
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Oncogene Proteins, Viral/metabolism
- Papillomavirus E7 Proteins/metabolism
- Repressor Proteins/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Fei Liu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bihua Lin
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xin Liu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenzhang Zhang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Erying Zhang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liang Hu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuefan Ma
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiangyong Li
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xudong Tang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
- †Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
32
|
Musumeci G, Castorina A, Magro G, Cardile V, Castorina S, Ribatti D. Enhanced expression of CD31/platelet endothelial cell adhesion molecule 1 (PECAM1) correlates with hypoxia inducible factor-1 alpha (HIF-1α) in human glioblastoma multiforme. Exp Cell Res 2015; 339:407-416. [PMID: 26376118 DOI: 10.1016/j.yexcr.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by numerous abnormal blood vessels, which rapidly proliferate and invade brain tissue and express different angiogenic factors. In this study we have investigated whether the expression levels of CD31/ PECAM1 are deregulated in human GBM tissue specimens and we have also correlated the expression levels of CD31/PECAM1 with those of HIF-1α. Finally, we have established a correlation between the expression levels of CD31/PECAM1 and HIF-1α, and those of two other biomarkers, namely N-cadherin and ADAM-10, of aggressiveness in the same tumors. Results have shown an increased expression of CD31/PECAM1 correlated to HIF-1α expression, confirming evidence demonstrating that different types of tumor are able to trigger aberrant angiogenesis through HIF-1α. Moreover, we also established a further correlation among CD31/PECAM1 and HIF-1α and N-cadherin and ADAM-10, two other markers of aggressiveness in the same tumors.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessandro Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Section of Anatomic Pathology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Vera Cardile
- Department of Biomedical Sciences and Biotechnologies, Section of Physiology, University of Catania, Via S. Sofia 87, 95125 Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy; Neurosurgery Unit, Fondazione Mediterranea "G.B. Morgagni", Catania, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Medical School, Policlinico - Piazza G. Cesare, 11, 70124 Bari, Italy; National Cancer Institute "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
33
|
Temraz S, Alameddine R, Shamseddine A. Angioprevention in Colon Cancer from Bench to Bedside. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
35
|
Hecht I, Natan S, Zaritsky A, Levine H, Tsarfaty I, Ben-Jacob E. The motility-proliferation-metabolism interplay during metastatic invasion. Sci Rep 2015; 5:13538. [PMID: 26337223 PMCID: PMC4642550 DOI: 10.1038/srep13538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the major cause for cancer patients' death, and despite all the recent advances in cancer research it is still mostly incurable. Understanding the mechanisms that are involved in the migration of the cells in a complex environment is a key step towards successful anti-metastatic treatment. Using experimental data-based modeling, we focus on the fundamentals of metastatic invasion: motility, invasion, proliferation and metabolism, and study how they may be combined to maximize the cancer's ability to metastasize. The modeled cells' performance is measured by the number of cells that succeed in migration in a maze, which mimics the extracellular environment. We show that co-existence of different cell clones in the tumor, as often found in experiments, optimizes the invasive ability in a frequently-changing environment. We study the role of metabolism and stimulation by growth factors, and show that metabolism plays a crucial role in the metastatic process and should therefore be targeted for successful treatment.
Collapse
Affiliation(s)
- Inbal Hecht
- School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sari Natan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Zaritsky
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA
- Research & Development Unit, Assaf Harofeh Medical Center, Zerifin, 70300, Israel
| |
Collapse
|
36
|
Expression of hypoxia inducible factor-1α and vascular endothelial growth factor-C in human chronic periodontitis. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with antiangiogenic therapy: a phase I trial of bortezomib plus bevacizumab. Oncotarget 2015; 5:10280-92. [PMID: 25373733 PMCID: PMC4279372 DOI: 10.18632/oncotarget.2163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/23/2014] [Indexed: 01/13/2023] Open
Abstract
Purpose We hypothesized that bortezomib, an agent that suppresses HIF-1α transcriptional activity, when combined with bevacizumab, would obviate the HIF-1α resistance pathway. The objectives of this phase I trial were to assess safety and biological activity of this combination. Experimental Design Patients with advanced, refractory malignancies were eligible. Patients received bevacizumab and bortezomib (3-week cycle) with dose expansions permitted if responses were seen and for assessing correlates. Pharmacodynamic assessment included plasma VEGF, VEGFR2, 20S proteasome inhibition, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and HIF-1α tumor expression. Results Ninety-one patients were treated (median=6 prior treatments). The FDA-approved doses of both drugs were safely reached, and the recommended phase 2 dose (RP2D) is bevacizumab 15 mg/kg with bortezomib 1.3 mg/m2. Four patients attained partial response (PR) and seven patients achieved stable disease (SD) ≥6 months (Total SD≥6 months/PR=11 (12%)). The most common drug-related toxicities included thrombocytopenia (23%) and fatigue (19%). DCE-MRI analysis demonstrated no dose-dependent decreases in Ktrans although analysis was limited by small sample size (N=12). Conclusion Combination bevacizumab and bortezomib is well-tolerated and has demonstrated clinical activity in patients with previously treated advanced malignancy. Pharmacodynamic assessment suggests that inhibition of angiogenic activity was achieved.
Collapse
|
38
|
Abstract
Colorectal cancer is a serious health problem, a challenge for research, and a model for studying the molecular mechanisms involved in its development. According to its incidence, this pathology manifests itself in three forms: family, hereditary, and most commonly sporadic, apparently not associated with any hereditary or familial factor. For the types having inheritance patterns and a family predisposition, the tumours develop through defined stages ranging from adenomatous lesions to the manifestation of a malignant tumour. It has been established that environmental and hereditary factors contribute to the development of colorectal cancer, as indicated by the accumulation of mutations in oncogenes, genes which suppress and repair DNA, signaling the existence of various pathways through which the appearance of tumours may occur. In the case of the suppressive and mutating tracks, these are characterised by genetic disorders related to the phenotypical changes of the morphological progression sequence in the adenoma/carcinoma. Moreover, alternate pathways through mutation in BRAF and KRAS genes are associated with the progression of polyps to cancer. This review surveys the research done at the cellular and molecular level aimed at finding specific alternative therapeutic targets for fighting colorectal cancer.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Felipe Sojo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Carlos Cotte
- Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| |
Collapse
|
39
|
Heberle AM, Prentzell MT, van Eunen K, Bakker BM, Grellscheid SN, Thedieck K. Molecular mechanisms of mTOR regulation by stress. Mol Cell Oncol 2015; 2:e970489. [PMID: 27308421 PMCID: PMC4904989 DOI: 10.4161/23723548.2014.970489] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 04/12/2023]
Abstract
Tumors are prime examples of cell growth in unfavorable environments that elicit cellular stress. The high metabolic demand and insufficient vascularization of tumors cause a deficiency of oxygen and nutrients. Oncogenic mutations map to signaling events via mammalian target of rapamycin (mTOR), metabolic pathways, and mitochondrial function. These alterations have been linked with cellular stresses, in particular endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Yet tumors survive these challenges and acquire highly energy-demanding traits, such as overgrowth and invasiveness. In this review we focus on stresses that occur in cancer cells and discuss them in the context of mTOR signaling. Of note, many tumor traits require mTOR complex 1 (mTORC1) activity, but mTORC1 hyperactivation eventually sensitizes cells to apoptosis. Thus, mTORC1 activity needs to be balanced in cancer cells. We provide an overview of the mechanisms contributing to mTOR regulation by stress and suggest a model wherein stress granules function as guardians of mTORC1 signaling, allowing cancer cells to escape stress-induced cell death.
Collapse
Affiliation(s)
- Alexander Martin Heberle
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | - Mirja Tamara Prentzell
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg, Germany
| | - Karen van Eunen
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Top Institute Food and Nutrition; Wageningen, The Netherlands
| | - Barbara Marleen Bakker
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | | | - Kathrin Thedieck
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- School of Medicine and Health Sciences; Carl von Ossietzky University Oldenburg; Oldenburg, Germany
- BIOSS Centre for Biological Signaling Studies; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Correspondence to: Kathrin Thedieck; E-mail: ;
| |
Collapse
|
40
|
Kwon S, Kim YE, Park JA, Kim DS, Kwon HJ, Lee Y. Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model. BMB Rep 2015; 47:215-20. [PMID: 24286311 PMCID: PMC4163885 DOI: 10.5483/bmbrep.2014.47.4.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/24/2013] [Accepted: 07/26/2014] [Indexed: 12/14/2022] Open
Abstract
Molecular-targeted therapy has gained attention because of its high efficacy and weak side effects. Previously, we confirmed that transmembrane 4 superfamily member 5 protein (TM4SF5) can serve as a molecular target to prevent or treat hepatocellular carcinoma (HCC). We recently extended the application of the peptide vaccine, composed of CpG-DNA, liposome complex, and TM4SF5 peptide, to prevent colon cancer in a mouse model. Here, we first implanted mice with mouse colon cancer cells and then checked therapeutic effects of the vaccine against tumor growth. Immunization with the peptide vaccine resulted in robust production of TM4SF5-specific antibodies, alleviated tumor growth, and reduced survival rate of the tumor-bearing mice. We also found that serum levels of VEGF were markedly reduced in the mice immunized with the peptide vaccine. Therefore, we suggest that the TM4SF5-specific peptide vaccine has a therapeutic effect against colon cancer in a mouse model. [BMB Reports 2014; 47(4): 215-220]
Collapse
Affiliation(s)
- Sanghoon Kwon
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Doo-Sik Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research; Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
41
|
Advanced gynecologic malignancies treated with a combination of the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus. Oncotarget 2015; 5:1846-55. [PMID: 24742900 PMCID: PMC4039109 DOI: 10.18632/oncotarget.1834] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Bevacizumab and temsirolimus are active agents in gynecologic tumors. Temsirolimus attenuates upregulation of HIF-1α levels, a resistance mechanism for antiangiogenics, and targets the PI3-kinase/AKT/mTOR axis, commonly aberrant in these tumors Patients and Methods: We analyzed safety and responses in 41 patients with gynecologic cancers treated as part of a Phase I study of bevacizumab and temsirolimus. Results: Median age of the 41 women was 60 years (range, 33-80 years); median number of prior systemic therapies was 4 (1-11). Grade 3 or 4 treatment-related toxicities included: thrombocytopenia (10%), mucositis (2%), hypertension (2%), hypercholesterolemia (2%), fatigue (7%), elevated aspartate aminotransferase (2%), and neutropenia (2%). Twenty-nine patients (71%) experienced no treatment-related toxicity greater than grade 2. Full FDA-approved doses of both drugs (bevacizumab 15mg/kg IV Q3weeks and temsirolimus 25mg IV weekly) were administered without dose-limiting toxicity. Eight patients (20%) achieved stable disease (SD) ≥ 6 months and 7 patients (17%), a partial response (PR) [total = 15/41 patients (37%)]. Eight of 13 patients (62%) with high-grade serous histology (ovarian or primary peritoneal) achieved SD ≥ 6 months/PR. Conclusion: Bevacizumab and temsirolimus was well tolerated. Thirty-seven percent of heavily-pretreated patients achieved SD ≥ 6 months/PR, suggesting that this combination warrants further study.
Collapse
|
42
|
Phospholipase D activates HIF-1-VEGF pathway via phosphatidic acid. Exp Mol Med 2014; 46:e126. [PMID: 25523098 PMCID: PMC4274397 DOI: 10.1038/emm.2014.86] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023] Open
Abstract
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1α (HIF-1α) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1α was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1α protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1α and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1α and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1α and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.
Collapse
|
43
|
Abstract
Osteosarcoma is the most common malignant bone tumor in children and characterized by aggressive biologic behavior of metastatic propensity to the lung. Change of treatment paradigm brings survival benefit; however, 5-year survival rate is still low in patients having metastastatic foci at diagnosis for a few decades. Metastasis-associated protein (MTA) family is a group of ubiquitously expressed coregulators, which influences on tumor invasiveness or metastasis. MTA1 has been investigated in various cancers including osteosarcoma, and its overexpression is associated with high-risk features of cancers. In this review, we described various molecular studies of osteosarcoma, especially associated with MTA1.
Collapse
Affiliation(s)
- Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-757, Korea,
| | | |
Collapse
|
44
|
Abstract
SIGNIFICANCE Fetal lung development takes place in hypoxia meaning that premature birth is hyperoxia for the prematurely born infant. The most common respiratory morbidity afflicting premature infants is bronchopulmonary dysplasia (BPD). Pathophysiologically, BPD represents the impact of injury, including O2 toxicity, to the immature developing lung that causes arrested lung development. RECENT ADVANCES The thioredoxin (Trx) system, which is predominantly expressed in pulmonary epithelia in the newborn lung, acts as an antioxidant system; however, it is increasingly recognized as a key redox regulator of signal transduction and gene expression via thiol-disulfide exchange reactions. CRITICAL ISSUES This review focuses on the contribution of Trx family proteins toward normal and aberrant lung development, in particular, the roles of the Trx system in hyperoxic responses of alveolar epithelial cells, aberrant lung development in animal models of BPD, O2-dependent signaling processes, and possible therapeutic efficacy in preventing O2-mediated lung injury. FUTURE DIRECTIONS The significant contribution of the Trx system toward redox regulation of key developmental pathways necessary for proper lung development suggests that therapeutic strategies focused on preserving pulmonary Trx function could significantly improve the outcomes of prematurely born human infants.
Collapse
Affiliation(s)
- Trent E Tipple
- 1 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
45
|
Ren-Ping Z, Sen-Sen L, Yuan ST, Yu BY, Bai XS, Sun L, Zhang LY. DT-13, a saponin of dwarf lilyturf tuber, exhibits anti-cancer activity by down-regulating C-C chemokine receptor type 5 and vascular endothelial growth factor in MDA-MB-435 cells. Chin J Nat Med 2014; 12:24-9. [PMID: 24484593 DOI: 10.1016/s1875-5364(14)60005-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Indexed: 01/14/2023]
Abstract
AIM To investigate the anticancer activity of DT-13 under normoxia and determine the underlying mechanisms of action. METHODS MDA-MB-435 cell proliferation, migration, and adhesion were performed to assess the anticancer activity of DT-13, a saponin from Ophiopogon japonicus, in vitro. In addition, the effects of DT-13 on tumor growth and metastasis in vivo were evaluated by orthotopic implantation of MDA-MB-435 cells into nude mice; mRNA levels of vascular endothelial growth factor (VEGF), C-C chemokine receptor type 5 (CCR5) and hypoxia-inducible factor 1α (HIF-1α) were evaluated by real-time quantitative PCR; and CCR5 protein levels were detected by Western blot assay. RESULTS At 0.01 to 1 μmol·L(-1), DT-13 inhibited MDA-MB-435 cell proliferation, migration, and adhesion significantly in vitro. DT-13 reduced VEGF and CCR5 mRNAs, and decreased CCR5 protein expression by down-regulating HIF-1α. In addition, DT-13 inhibited MDA-MB-435 cell lung metastasis, and restricted tumor growth slightly in vivo. CONCLUSION DT-13 inhibited MDA-MB-435 cell proliferation, adhesion, and migration in vitro, and lung metastasis in vivo by reducing VEGF, CCR5, and HIF-1α expression.
Collapse
Affiliation(s)
- Zhao Ren-Ping
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Sen-Sen
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Department of Complex Prescription of Traditional Chinese Medicine, School of Chinese Material Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bo-Yang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, School of Chinese Material Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xian-Shu Bai
- Department of Molecular Physiology, University of Saarland, 66421 Homburg, Germany
| | - Li Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Lu-Yong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
46
|
Lee S, Goldfinger LE. RLIP76 regulates HIF-1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB J 2014; 28:4158-68. [PMID: 24928198 DOI: 10.1096/fj.14-255711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 02/02/2023]
Abstract
This study was undertaken to reveal the mechanisms by which RLIP76 regulates endothelial cell angiogenic responses. RLIP76 is an effector of the angiogenic modulator, R-Ras. RLIP76 is overexpressed in many tumors, required for tumor angiogenesis, and blockade of RLIP76 results in tumor regression in multiple models. We report here that RLIP76 was required for expression and secretion of vascular endothelial growth factor (VEGF) in carcinoma and melanoma cells. Conditioned medium derived from RLIP76-depleted tumor cells, but not control knockdown cells, could not stimulate proliferation, migration, or Matrigel cord formation in endothelial cell cultures, which indicates that RLIP76 regulates angiogenic components of the tumor cell secretome. Recombinant VEGF added to conditioned medium from RLIP76-knockdown tumor cells restored these endothelial cell functions. Transcriptional activity of hypoxia-inducible factor 1 (HIF-1), which drives VEGF expression, was blocked in RLIP76-depleted tumor cells. RLIP76 was required for PI3-kinase activation, known to regulate HIF-1, in these cells. However, HIF-1α expression and nuclear localization were unaffected by RLIP76 knockdown, which suggests that RLIP76 regulates HIF-1 at the functional level. Thus, RLIP76 regulates tumor cell transactivation of endothelial cells via control of VEGF expression and secretion, providing a new important link in the mechanism of tumor cell induction of angiogenesis.
Collapse
Affiliation(s)
- Seunghyung Lee
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Lawrence E Goldfinger
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014; 90:233-52. [DOI: 10.1016/j.critrevonc.2013.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/27/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
|
48
|
Sibenaller ZA, Welsh JL, Du C, Witmer JR, Schrock HE, Du J, Buettner GR, Goswami PC, Cieslak JA, Cullen JJ. Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1α in pancreatic cancer. Free Radic Biol Med 2014; 69:357-66. [PMID: 24509158 PMCID: PMC3981470 DOI: 10.1016/j.freeradbiomed.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that governs cellular responses to reduced oxygen availability by mediating crucial homeostatic processes and is a major survival determinant for tumor cells growing in a low-oxygen environment. Clinically, HIF-1α seems to be important in pancreatic cancer, as HIF-1α correlates with metastatic status of the tumor. Extracellular superoxide dismutase (EcSOD) inhibits pancreatic cancer cell growth by scavenging nonmitochondrial superoxide. We hypothesized that EcSOD overexpression leads to changes in the O2(-)/H2O2 balance modulating the redox status affecting signal transduction pathways. Both transient and stable overexpression of EcSOD suppressed the hypoxic accumulation of HIF-1α in human pancreatic cancer cells. This suppression of HIF-1α had a strong inverse correlation with levels of EcSOD protein. Coexpression of the hydrogen peroxide-removing protein glutathione peroxidase did not prevent the EcSOD-induced suppression of HIF-1α, suggesting that the degradation of HIF-1α observed with high EcSOD overexpression is possibly due to a low steady-state level of superoxide. Hypoxic induction of vascular endothelial growth factor (VEGF) was also suppressed with increased EcSOD. Intratumoral injections of an adenoviral vector containing the EcSOD gene into preestablished pancreatic tumors suppressed both VEGF levels and tumor growth. These results demonstrate that the transcription factor HIF-1α and its important gene target VEGF can be modulated by the antioxidant enzyme EcSOD.
Collapse
Affiliation(s)
- Zita A Sibenaller
- Department of Surgery, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Jessemae L Welsh
- Department of Surgery, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Changbin Du
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Jordan R Witmer
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Hannah E Schrock
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Prabhat C Goswami
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - John A Cieslak
- Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Department of Surgery, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Radiation Oncology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Zheng J, Nagda DA, Lajud SA, Kumar S, Mouchli A, Bezpalko O, O'Malley BW, Li D. Biliverdin's regulation of reactive oxygen species signalling leads to potent inhibition of proliferative and angiogenic pathways in head and neck cancer. Br J Cancer 2014; 110:2116-22. [PMID: 24569474 PMCID: PMC3992514 DOI: 10.1038/bjc.2014.98] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In this study, we evaluate whether the use of biliverdin (BV), a natural non-toxic antioxidant product of haeme catabolism, can suppress head and neck squamous cell carcinoma (HNSCC) cell proliferation and improve the tumour survival both in vitro and in vivo. Furthermore, we investigate whether this therapeutic outcome relies on BV's potent antioxidant effect on reactive oxygen species (ROS)-mediated signalling. METHODS Two well-characterised HNSCC cell lines and a mouse model with human HNSCC were used for this study. In vitro, the effect of BV on ROS was assayed. Subsequently, critical regulatory proteins involved in growth, antiapoptotic, and angiogenic pathways were investigated by western blot analysis. In addition, the antiproliferative effect of BV was also evaluated using the clonogenic assay. Moreover, tumour growth inhibition was assessed using a mouse model with HNSCC. RESULTS Biliverdin treatment resulted in decreased ROS, leading to suppression of proliferation and angiogenesis pathways of HNSCC, significantly decreasing the expression and phosphorylation of oncogenic factors such as epidermal growth factor receptor (EGFR), phosphorylation of Akt, and expression of angiogenic marker and transcription factor, hypoxia-inducible factor1-α (HIF1-α). Furthermore, this downregulation of ROS by BV led to a significant suppression of tumour growth in vivo. CONCLUSIONS Our study demonstrates the efficacy of a novel therapeutic approach using BV as an antitumour agent against HNSCC through its effect on EGFR/Akt and HIF1-α/angiogenesis signal transduction pathways. Our findings indicate that BV's inhibitory effect on these tumorigenic pathways relies on its antioxidant effect, and may extend its therapeutic potential to other solid cancers.
Collapse
Affiliation(s)
- J Zheng
- 1] Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA [2] Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - D A Nagda
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - S A Lajud
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - S Kumar
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - A Mouchli
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - O Bezpalko
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - B W O'Malley
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - D Li
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| |
Collapse
|
50
|
Abstract
Since the initial hypotheses on the importance of angiogenesis in the pathogenesis of cancer approximately 30 years ago, there have been major advances in the understanding of the cellular and molecular mechanisms involved in the regulation of this complex process of new vessel formation. Among the multitude of factors, vascular endothelial growth factor (VEGF) has emerged as one of the most potent angiogenic factors, being implicated in the initiation of signal transduction responsible for cell proliferation, survival, migration and adhesion. Inhibition of VEGF and its signaling pathway offers a potential new molecular target in cancer therapy. This article reviews the role of angiogenesis and its mediators, particularly vascular endothelial growth factors, in hematological malignancies, as well as the potential use of anti-angiogenic therapies in the management of these conditions.
Collapse
Affiliation(s)
- Soon Thye Lim
- Keck School of Medicine/Norris, university of Southern california, Comprehensive Cancer center, Los Angeles, CA 90033, USA
| | | |
Collapse
|