1
|
Chen J, Zhao J, Yang S, Chen Z, Zhang Z. Prediction of Protein Ubiquitination Sites in Arabidopsis thaliana. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190311141647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As one of the most important reversible protein post-translation modification
types, ubiquitination plays a significant role in the regulation of many biological processes,
such as cell division, signal transduction, apoptosis and immune response. Protein ubiquitination
usually occurs when ubiquitin molecule is attached to a lysine on a target protein, which is also
known as “lysine ubiquitination”.
Objective:
In order to investigate the molecular mechanisms of ubiquitination-related biological
processes, the crucial first step is the identification of ubiquitination sites. However, conventional
experimental methods in detecting ubiquitination sites are often time-consuming and a large number
of ubiquitination sites remain unidentified. In this study, a ubiquitination site prediction method
for Arabidopsis thaliana was developed using a Support Vector Machine (SVM).
Methods:
We collected 3009 experimentally validated ubiquitination sites on 1607 proteins in A.
thaliana to construct the training set. Three feature encoding schemes were used to characterize
the sequence patterns around ubiquitination sites, including AAC, Binary and CKSAAP. The maximum
Relevance and Minimum Redundancy (mRMR) feature selection method was employed to
reduce the dimensionality of input features. Five-fold cross-validation and independent tests were
used to evaluate the performance of the established models.
Results:
As a result, the combination of AAC and CKSAAP encoding schemes yielded the
best performance with the accuracy and AUC of 81.35% and 0.868 in the independent test.
We also generated an online predictor termed as AraUbiSite, which is freely accessible at:
http://systbio.cau.edu.cn/araubisite.
Conclusion:
We developed a well-performed prediction tool for large-scale ubiquitination site
identification in A. thaliana. It is hoped that the current work will speed up the process of identification
of ubiquitination sites in A. thaliana and help to further elucidate the molecular mechanisms
of ubiquitination in plants.
Collapse
Affiliation(s)
- Jiajing Chen
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianan Zhao
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Chen
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
3
|
Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, Dittmar G, Clague MJ, Mayor U. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Mol Neurodegener 2017; 12:29. [PMID: 28399880 PMCID: PMC5387213 DOI: 10.1186/s13024-017-0170-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkin (PARK2) is an E3 ubiquitin ligase that is commonly mutated in Familial Parkinson's Disease (PD). In cell culture models, Parkin is recruited to acutely depolarised mitochondria by PINK1. PINK1 activates Parkin activity leading to ubiquitination of multiple proteins, which in turn promotes clearance of mitochondria by mitophagy. Many substrates have been identified using cell culture models in combination with depolarising drugs or proteasome inhibitors, but not in more physiological settings. METHODS Here we utilized the recently introduced BioUb strategy to isolate ubiquitinated proteins in flies. Following Parkin Wild-Type (WT) and Parkin Ligase dead (LD) expression we analysed by mass spectrometry and stringent bioinformatics analysis those proteins differentially ubiquitinated to provide the first survey of steady state Parkin substrates using an in vivo model. We further used an in vivo ubiquitination assay to validate one of those substrates in SH-SY5Y cells. RESULTS We identified 35 proteins that are more prominently ubiquitinated following Parkin over-expression. These include several mitochondrial proteins and a number of endosomal trafficking regulators such as v-ATPase sub-units, Syx5/STX5, ALiX/PDCD6IP and Vps4. We also identified the retromer component, Vps35, another PD-associated gene that has recently been shown to interact genetically with parkin. Importantly, we validated Parkin-dependent ubiquitination of VPS35 in human neuroblastoma cells. CONCLUSIONS Collectively our results provide new leads to the possible physiological functions of Parkin activity that are not overtly biased by acute mitochondrial depolarisation.
Collapse
Affiliation(s)
- Aitor Martinez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain.,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Gunnar Dittmar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain. .,Functional Genomics Unit, CIC bioGUNE, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
4
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
5
|
Ramirez J, Martinez A, Lectez B, Lee SY, Franco M, Barrio R, Dittmar G, Mayor U. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells. PLoS One 2015; 10:e0139083. [PMID: 26460970 PMCID: PMC4604154 DOI: 10.1371/journal.pone.0139083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. METHODOLOGY/PRINCIPAL FINDINGS Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. CONCLUSIONS/SIGNIFICANCE These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Aitor Martinez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Benoit Lectez
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
- Mollecular Cell Biology, Turku Centre for Biotechnology, Turku, Finland
| | - So Young Lee
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Maribel Franco
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
- Developmental Neurobiology, Institute of Neurosciences, CSIC/UMH, Sant Joan d’Alacant, Alicante, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- * E-mail:
| |
Collapse
|
6
|
Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 2014; 15:844-61. [PMID: 25327553 DOI: 10.1002/pmic.201400341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.
Collapse
Affiliation(s)
- Daniel Scott
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
7
|
Sperm ubiquitination in epididymal feline semen. Theriogenology 2014; 82:636-42. [PMID: 24999010 DOI: 10.1016/j.theriogenology.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 11/23/2022]
Abstract
Ubiquitin is a 8.5-kDa peptide that tags other proteins for proteasomal degradation. It has been proposed that ubiquitination might be responsible for the elimination of defective spermatozoa during transit through the epididymis in humans and cattle, but its exact biological function in seminal plasma has not yet been clarified. In the domestic cat (Felis catus), the percentage of immature, unviable, and abnormal spermatozoa decreases during the epididymal transit, indicating the existence of a mechanism that removes defective spermatozoa. Magnetic cell separation techniques, based on the use of magnetic beads coated with anti-ubiquitin antibodies, may allow the selective capture of ubiquitinated spermatozoa from semen, thus contributing to the identification of a potential correlation between semen quality and ubiquitination process. Moreover, the selective identification of all the ubiquitinated proteins in different epididymal regions could give a better understanding of the ubiquitin role in feline sperm maturation. The aims of this study were as follows: (1) to verify the possibility of separating ubiquitinated spermatozoa with magnetic ubiquitin beads and identify the morphological and acrosomal differences between whole sample and unbound gametes, (2) to characterize all the ubiquitinated proteins in spermatozoa retrieved in the three epididymal regions by a proteomic approach. The data indicated the presence of ubiquitinated proteins in cat epididymal semen. However, a correlation between abnormal and ubiquitinated spermatozoa has not been found, and ubiquitin cannot be considered as a biomarker of quality of epididymal feline spermatozoa. To the author's knowledge, this is the first identification of all the ubiquitinated proteins of cat spermatozoa collected from different epididymal regions. The proteomic pattern allows a further characterization of cat epididymal semen and represents a contribute to a better understanding of the ubiquitin role in feline sperm maturation.
Collapse
|
8
|
Fiedler KL, Cotter RJ. Using glycinylation, a chemical derivatization technique, for the quantitation of ubiquitinated proteins. Anal Chem 2013; 85:5827-34. [PMID: 23682733 PMCID: PMC3713787 DOI: 10.1021/ac400398s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quantitation of lysine post-translational modifications (PTMs) by bottom-up mass spectrometry is convoluted by the need for analogous derivatives and the production of different tryptic peptides from the unmodified and modified versions of a protein. Chemical derivatization of lysines prior to enzymatic digestion circumvents these problems and has proven to be a successful method for lysine PTM quantitation. The most notable example is the use of deuteroacetylation to quantitate lysine acetylation. In this work, levels of lysine ubiquitination were quantitated using a structurally homologous label that is chemically similar to the diglycine (GlyGly) tag, which is left at the ubiquitination site upon trypsinolysis. The LC-MS analysis of a chemically equivalent monoglycine (Gly) tag that is analogous to the corresponding GlyGly tag proved that the monoglycine tag can be used for the quantitation of ubiquitination. A glycinylation protocol was then established for the derivatization of proteins to label unmodified lysine residues with a single glycine tag. Ubiquitin multimers were used to show that after glycinylation and tryptic digestion, the mass spectrometric response from the corresponding analogous tagged peptides could be compared for relative quantitation. For a proof of principle regarding the applicability of this technique to the analysis of ubiquitination in biological samples, the glycinylation technique was used to quantitate the increase in monoubiquitinated histone H2B that is observed in yeast which lacks the enzyme responsible for deubiquitinating H2B-K123, compared to wild-type yeast.
Collapse
Affiliation(s)
- Katherine L Fiedler
- Johns Hopkins University School of Medicine, Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular Sciences, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
9
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
10
|
Tuckow AP, Kazi AA, Kimball SR, Jefferson LS. Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon. Biochem Biophys Res Commun 2013; 436:41-6. [PMID: 23707720 DOI: 10.1016/j.bbrc.2013.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 11/16/2022]
Abstract
Eukaryotic initiation factor 2Bε (eIF2Bε) plays a critical role in the initiation of mRNA translation and its expression and guanine nucleotide exchange activity are major determinants of the rate of protein synthesis. In this work we provide evidence that the catalytic epsilon subunit of eIF2B is subject to ubiquitination and proteasome-mediated degradation. Lysates of C2C12 myoblasts treated with proteasome inhibitor were subjected to sequential immunoprecipitations for eIF2Bε followed by ubiquitin. Tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated proteins resulted in the identification of five peptides containing ubiquitin (diglycine) modifications on eIF2Bε. The specific lysine residues containing the ubiquitin modifications were localized as Lys-56, Lys-98, Lys-136, Lys-212 and Lys-500 (corresponding to the rat protein sequence). In addition three novel phosphorylation sites were identified including Ser-22, Ser-125, and Thr-317. Moreover, peptides corresponding to the amino acid sequence of the E3 ligase NEDD4 were also detected in the LC-MS/MS analysis, and an interaction between endogenous eIF2Bε with NEDD4 was confirmed by co-immunoprecipitation.
Collapse
Affiliation(s)
- Alexander P Tuckow
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
11
|
Niño CA, Chaparro J, Soffientini P, Polo S, Wasserman M. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis. Microbiologyopen 2013; 2:525-39. [PMID: 23613346 PMCID: PMC3684764 DOI: 10.1002/mbo3.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023] Open
Abstract
Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote.
Collapse
Affiliation(s)
- Carlos A Niño
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
12
|
Chicooree N, Connolly Y, Tan CT, Malliri A, Li Y, Smith DL, Griffiths JR. Enhanced detection of ubiquitin isopeptides using reductive methylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:421-30. [PMID: 23361369 DOI: 10.1007/s13361-012-0538-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Identification of ubiquitination (Ub) sites is of great interest due to the critical roles that the modification plays in cellular regulation. Current methods using mass spectrometry rely upon tryptic isopeptide diglycine tag generation followed by database searching. We present a novel approach to ubiquitin detection based upon the dimethyl labeling of isopeptide N-termini glycines. Ubiquitinated proteins were digested with trypsin and the resulting peptide mixture was derivatized using formaldehyde-D2 solution and sodium cyanoborohydride. The dimethylated peptide mixtures were next separated by liquid chromatography and analyzed on a quadrupole-TOF based mass spectrometer. Diagnostic b2' and a1' ions released from the isopeptide N-terminus upon collision-induced dissociation (CID) were used to spectrally improve the identification of ubiquitinated isopeptides. Proof of principle was established by application to a ubiquitinated protein tryptic digest spiked into a six-protein mix digest background. Extracted ion chromatograms of the a1' and b2' diagnostic product ions from the diglycine tag resulted in a significant reduction in signal complexity and demonstrated a selectivity towards the identification of diglycine branched isopeptides. The method was further shown to be capable of identifying diglycine isopeptides resulting from in-gel tryptic digests of ubiquitin enriched material from a His-Ub transfected cell line. We envisage that these ions may be utilized in global ubiquitination studies with post-acquisition MS/MS (or MSe) data interrogation on high resolution hybrid mass spectrometers. ᅟ
Collapse
Affiliation(s)
- Navin Chicooree
- Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Low TY, Magliozzi R, Guardavaccaro D, Heck AJR. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics 2012; 13:526-37. [PMID: 23019148 DOI: 10.1002/pmic.201200244] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 11/11/2022]
Abstract
Ubiquitin (Ub) is a small protein modifier that is covalently attached to the ε-amino group of lysine residues of protein substrates, generally targeting them for degradation. Due to the emergence of specific anti-diglycine (-GG) antibodies and the improvement in MS, it is now possible to identify more than 10 000 ubiquitylated sites in a single proteomics study. Besides cataloging ubiquitylated sites, it is equally important to unravel the biological relationship between ubiquitylated substrates and the ubiquitin conjugation machinery. Relevant to this, we discuss the role of affinity purification-MS (AP-MS), in characterizing E3 ligase-substrate complexes. Recently, such strategies have also been adapted to screen for binding partners of both deubiquitylating enzymes (DUBs) and ubiquitin-binding domains (UBDs). The complexity of the "ubiquitome" is further expanded by the fact that Ub itself can be ubiquitylated at any of its seven lysine residues forming polyubiquitin (polyUb), thus diversifying its lengths and topologies to suit a variety of molecular recognition processes. Therefore, applying MS to study polyUb linkages is also becoming an emerging and important area. Finally, we discuss the future of MS-based proteomics in answering important questions with respect to ubiquitylation.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Use of biotinylated ubiquitin for analysis of rat brain mitochondrial proteome and interactome. Int J Mol Sci 2012; 13:11593-11609. [PMID: 23109873 PMCID: PMC3472765 DOI: 10.3390/ijms130911593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 11/16/2022] Open
Abstract
Applicability of in vitro biotinylated ubiquitin for evaluation of endogenous ubiquitin conjugation and analysis of ubiquitin-associated protein-protein interactions has been investigated. Incubation of rat brain mitochondria with biotinylated ubiquitin followed by affinity chromatography on avidin-agarose, intensive washing, tryptic digestion of proteins bound to the affinity sorbent and their mass spectrometry analysis resulted in reliable identification of 50 proteins belonging to mitochondrial and extramitochondrial compartments. Since all these proteins were bound to avidin-agarose only after preincubation of the mitochondrial fraction with biotinylated ubiquitin, they could therefore be referred to as specifically bound proteins. A search for specific ubiquitination signature masses revealed several extramitochondrial and intramitochondrial ubiquitinated proteins representing about 20% of total number of proteins bound to avidin-agarose. The interactome analysis suggests that the identified non-ubiquitinated proteins obviously form tight complexes either with ubiquitinated proteins or with their partners and/or mitochondrial membrane components. Results of the present study demonstrate that the use of biotinylated ubiquitin may be considered as the method of choice for in vitro evaluation of endogenous ubiquitin-conjugating machinery in particular subcellular organelles and changes in ubiquitin/organelle associated interactomes. This may be useful for evaluation of changes in interactomes induced by protein ubiquitination under norm and various brain pathologies.
Collapse
|
15
|
Engelke R, Becker AC, Dengjel J. The degradative inventory of the cell: proteomic insights. Antioxid Redox Signal 2012; 17:803-12. [PMID: 22074050 DOI: 10.1089/ars.2011.4393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Protein degradation has been identified as being deregulated in numerous human diseases. Hence, proteins involved in proteasomal as well as lysosomal degradation are regarded as interesting potential drug targets and are thoroughly investigated in clinical studies. RECENT ADVANCES Technical advances in the field of quantitative mass spectrometry (MS)-based proteomics allow for detailed investigations of protein degradation dynamics and identifications of responsible protein-protein interaction networks enabling a systematic analysis of the degradative inventory of the cell and its underlying molecular mechanisms. CRITICAL ISSUES In the current review we outline recent technical advances and their limitations in MS-based proteomics and discuss their use for the analysis of protein dynamics involved in degradation processes. FUTURE DIRECTIONS In the next years the analysis of crosstalk between different posttranslational modifications (PTMs) will be a major focus of MS-based proteomics studies. Increasing evidence highlights the complexity of PTMs with positive and negative feedbacks being discovered. In this regard, the generation of absolute quantitative proteomic data will be essential for theoretical scientists to construct predictive network models that constitute a valuable tool for fast hypothesis testing and for explaining underlying molecular mechanisms.
Collapse
Affiliation(s)
- Rudolf Engelke
- Freiburg Institute for Advanced Studies, School of Life Science-LifeNet, University of Freiburg, Germany
| | | | | |
Collapse
|
16
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
17
|
Qureshi N, Morrison DC, Reis J. Proteasome protease mediated regulation of cytokine induction and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2087-93. [PMID: 22728331 DOI: 10.1016/j.bbamcr.2012.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/16/2023]
Abstract
We have previously demonstrated that proteasome serves as a central regulator of inflammation and macrophage function. Until recently, proteasomes have generally been considered to play a relatively passive role in the regulation of cellular activity, i.e., any ubiquitinated protein was considered to be in discriminatively targeted for degradation by the proteasome. We have demonstrated, however, by using specific proteasome protease inhibitors and knockout mice lacking specific components of immunoproteasomes, that proteasomes (containing X, Y, and Z protease subunits) and immunoproteasomes (containing LMP7, LMP2, and LMP10 protease subunits) have well-defined functions in cytokine induction and inflammation based on their individual protease activities. We have also shown that LPS-TLR mediated signaling in the murine RAW 264.7 macrophage cell line results in the replacement of macrophage immunoproteasomal subunits. Such modifications serve as pivotal regulators of LPS-induced inflammation. Our findings support the relatively novel concept that defects in structure/function of proteasome protease subunits caused by genetic disorders, aging, diet, or drugs may well have the potential to contribute to modulation of proteasome activity. Of particular relevance, we have identified quercetin and resveratrol, significant constituents present in berries and in red wine respectively, as two novel proteasome inhibitors that have been previously implicated as disease-modifying natural products. We posit that natural proteasome inhibitors/activators can potentially be used as therapeutic response modifiers to prevent/treat diseases through pathways involving the ubiquitin-proteasome pathway (UP-pathway), which likely functions as a master regulator involved in control of overall inflammatory responses. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
Affiliation(s)
- Nilofer Qureshi
- Department of Basic Medical Sciences, University of Missouri, Kansas City, MO 64108, USA.
| | | | | |
Collapse
|
18
|
Abstract
This review provides an introduction to mass spectrometry based proteomics and discusses several proteomics approaches that are relevant in understanding the pathophysiology of fibrotic disorders and the approaches that are frequently used in biomarker discovery.
Collapse
Affiliation(s)
- Marjan Gucek
- NHLBI Proteomics Core , National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Strachan J, Roach L, Sokratous K, Tooth D, Long J, Garner TP, Searle MS, Oldham NJ, Layfield R. Insights into the molecular composition of endogenous unanchored polyubiquitin chains. J Proteome Res 2012; 11:1969-80. [PMID: 22268864 DOI: 10.1021/pr201167n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse influences of ubiquitin, mediated by its post-translational covalent modification of other proteins, have been extensively investigated. However, more recently roles for unanchored (nonsubstrate linked) polyubiquitin chains have also been proposed. Here we describe the use of ubiquitin-binding domains to affinity purify endogenous unanchored polyubiquitin chains and their subsequent characterization by mass spectrometry (MS). Using the A20 Znf domain of the ubiquitin receptor ZNF216 we isolated a protein from skeletal muscle shown by a combination of nanoLC-MS and LC-MS/MS to represent an unmodified and unanchored K48-linked ubiquitin dimer. Selective purification of unanchored polyubiquitin chains using the Znf UBP (BUZ) domain of USP5/isopeptidase-T allowed the isolation of K48 and K11-linked ubiquitin dimers, as well as revealing longer chains containing as many as 15 ubiquitin moieties, which include the K48 linkage. Top-down nanoLC-MS/MS of the A20 Znf-purified ubiquitin dimer generated diagnostic ions consistent with the presence of the K48 linkage, illustrating for the first time the potential of this approach to probe connectivity within endogenous polyubiquitin modifications. As well as providing initial proteomic insights into the molecular composition of endogenous unanchored polyubiquitin chains, this work also represents the first definition of polyubiquitin chain length in vivo.
Collapse
Affiliation(s)
- Joanna Strachan
- School of Biomedical Sciences, University of Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012; 12:621-37. [DOI: 10.1002/pmic.201100373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/07/2022]
|
21
|
Abstract
Protein modification by ubiquitin (Ub) is one of the most common posttranslational events in eukaryotic cells. Ubiquitinated proteins are destined to various fates such as proteasomal degradation, protein trafficking, DNA repair, and immune response. In the last decade, vast improvements of mass spectrometry make it feasible to analyze the minute amount of ubiquitinated components in vivo. When combined with quantitative strategies, such as stable isotope labeling with amino acids in cell culture (SILAC), it is capable of profiling ubiquitinated proteome under different experimental conditions. Here, we describe a procedure to perform such a study, including differential protein labeling by the SILAC method, enrichment of ubiquitinated species, mass spectrometric analysis, and quality control to reduce false positives. The potential challenges and limitations of the procedure are also discussed.
Collapse
Affiliation(s)
- Chan Hyun Na
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
22
|
Abstract
Protein ubiquitylation is a highly conserved, central mechanism to regulate cellular events in all eukaryotes, such as proteasomal degradation, protein trafficking, DNA repair, synaptic plasticity, and immune response. The consequence of protein ubiquitylation is modulated by the structure of ubiquitin (Ub) moiety attached on the substrates, including ubiquitin monomer and diverse polyubiquitin chains with different linkages (N-terminus, K6, K11, K27, K29, K33, K48, and K63). The development of ubiquitin-enrichment strategies coupled with sensitive mass spectrometry enables direct analysis of ubiquitylated proteins in cells, providing an invaluable tool for ubiquitin research. In this chapter, we describe recent technology updates for analyzing tissue-specific ubiquitin conjugates in transgenic models, as well as targeted proteomics methods for quantifying different polyubiquitin chain linkages in any type of -samples, including human tissues.
Collapse
|
23
|
Koppen T, Weckmann A, Müller S, Staubach S, Bloch W, Dohmen RJ, Schwientek T. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 2011; 11:4397-410. [PMID: 21901833 DOI: 10.1002/pmic.201000774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/30/2023]
Abstract
Distinct types of vesicles are formed in eukaryotic cells that conduct a variable set of functions depending on their origin. One subtype designated circulating microvesicles (MVs) provides a novel form of intercellular communication and recent work suggested the release and uptake of morphogens in vesicles by Drosophila cells. In this study, we have examined cells of the hemocyte-like cell lines Kc167 and S2 and identified secreted vesicles in the culture supernatant. The vesicles were isolated and found to have characteristics comparable to exosomes and plasma membrane MVs released by mammalian cells. In wingless-transfected cells, the full-length protein was detected in the vesicle isolates. Proteomics analyses of the vesicles identified 269 proteins that include various orthologs of marker proteins and proteins with putative functions in vesicle formation and release. Analogous to their mammalian counterparts, the subcellular origin of the vesicular constituents of both cell lines is dominated by membrane-associated and cytosolic proteins with functions that are consistent with their localization in MVs. The analyses revealed a significant overlap of the Kc167 and S2 vesicle proteomes and confirmed a close correlation with non-mammalian and mammalian exosomes.
Collapse
Affiliation(s)
- Tim Koppen
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Williamson AJK, Whetton AD. The requirement for proteomics to unravel stem cell regulatory mechanisms. J Cell Physiol 2011; 226:2478-83. [PMID: 21792904 DOI: 10.1002/jcp.22610] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cells are defined by their ability to self-renew and to differentiate, the processes whereby these events are achieved is the subject of much investigation. These studies include cancer stem cell populations, where eradication of this specific population is the ultimate goal of treatment. Whilst cellular signalling events and transcription factor complex-mediated changes in gene expression have been analysed in some detail within stem cells, full systematic understanding of the events promoting self-renewal or the commitment process leading to formation of a specific cell type require a systems biology approach. This in turn demands a need for proteomic analysis of post-translational regulation of protein levels, protein interactions, protein post-translational modification (e.g. ubiquitination, methylation, acetylation, phosphorylation) to identify networks for stem cell regulation. Furthermore, the phenomenon of induced pluripotency via cellular reprogramming also can be understood optimally using combined molecular biology and proteomics approaches; here we describe current research employing proteomics and mass spectrometry to dissect stem cell regulatory mechanisms.
Collapse
Affiliation(s)
- Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie's NHS Foundation Trust, Wolfson Molecular Imaging Centre, Withington, Manchester, UK.
| | | |
Collapse
|
25
|
Bond AE, Row PE, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences. PHYTOCHEMISTRY 2011; 72:975-96. [PMID: 21353264 DOI: 10.1016/j.phytochem.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 01/21/2011] [Indexed: 05/03/2023]
Abstract
Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.
Collapse
Affiliation(s)
- A E Bond
- Biochemistry Group, College of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|
26
|
Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemière F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. PHYTOCHEMISTRY 2011; 72:1192-218. [PMID: 21345472 DOI: 10.1016/j.phytochem.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/21/2010] [Accepted: 01/03/2011] [Indexed: 05/11/2023]
Abstract
The congruent development of computational technology, bioinformatics and analytical instrumentation makes proteomics ready for the next leap. Present-day state of the art proteomics grew from a descriptive method towards a full stake holder in systems biology. High throughput and genome wide studies are now made at the functional level. These include quantitative aspects, functional aspects with respect to protein interactions as well as post translational modifications and advanced computational methods that aid in predicting protein function and mapping these functionalities across the species border. In this review an overview is given of the current status of these aspects in plant studies with special attention to non-genomic model plants.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wasbrough ER, Dorus S, Hester S, Howard-Murkin J, Lilley K, Wilkin E, Polpitiya A, Petritis K, Karr TL. The Drosophila melanogaster sperm proteome-II (DmSP-II). J Proteomics 2010; 73:2171-85. [DOI: 10.1016/j.jprot.2010.09.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023]
|
28
|
Ytterberg AJ, Jensen ON. Modification-specific proteomics in plant biology. J Proteomics 2010; 73:2249-66. [PMID: 20541636 DOI: 10.1016/j.jprot.2010.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Post-translational modifications (PTMs) are involved in the regulation of a wide range of biological processes, and affect e.g. protein structure, activity and stability. Several hundred PTMs have been described in the literature, but relatively few have been studied using mass spectrometry and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM, but also to determine the functional relevance in the context of regulation, response to abiotic stress etc. Protein phosphorylation is the only PTM that has been studied extensively at the proteome wide level in plants using mass spectrometry based methods. We review phosphoproteomics studies in plants and discuss the redox mediated PTMs (S-nitrosylation, tyrosine nitration and S-glutathionylation), ubiquitylation, SUMOylation, and glycosylation, including GPI anchors, and the quantitative proteomics methods that are used to study these modification in plants. Where appropriate we contrast the methods to those used for mammalian PTM characterization.
Collapse
Affiliation(s)
- A Jimmy Ytterberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | |
Collapse
|
29
|
Molina M, Cid VJ, Martín H. Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications. Yeast 2010; 27:503-11. [DOI: 10.1002/yea.1791] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. J Virol 2010; 84:3320-30. [PMID: 20089662 DOI: 10.1128/jvi.02590-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 viral protein R (Vpr) induces cell cycle arrest at the G(2)/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G(2) arrest. While attractive, this model is based solely on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G(2) arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that the depletion of VPRBP by RNA interference or the overexpression of a dominant negative mutant of CUL4A decreased this association. Importantly, G(2)-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed a decreased association with ubiquitinated proteins. We also found that the inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, the inhibition of K48 polyubiquitination specifically impaired the Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that the association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of as-yet-unknown cellular proteins, resulting in their proteasomal degradation and ultimately leading to the activation of ATR and G(2) arrest.
Collapse
|
31
|
Abstract
Protein ubiquitination and protein phosphorylation are two fundamental regulatory post-translational modifications controlling intracellular signalling events. However, the ubiquitin system is vastly more complex compared with phosphorylation. This is due to the ability of ubiquitin to form polymers, i.e. ubiquitin chains, of at least eight different linkages. The linkage type of the ubiquitin chain determines whether a modified protein is degraded by the proteasome or serves to attract proteins to initiate signalling cascades or be internalized. The present review focuses on the emerging complexity of the ubiquitin system. I review what is known about individual chain types, and highlight recent advances that explain how the ubiquitin system achieves its intrinsic specificity. There is much to be learnt from the better-studied phosphorylation system, and many key regulatory mechanisms underlying control by protein phosphorylation may be similarly employed within the ubiquitin system. For example, ubiquitination may have important allosteric roles in protein regulation that are currently not appreciated.
Collapse
|
32
|
Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB, Kessler BM. Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1652-9. [PMID: 19523847 DOI: 10.1016/j.jasms.2009.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 05/11/2023]
Abstract
Ubiquitination has emerged as one of the major post-translational modifications that decide on protein fate, targeting, and regulation of protein function. Whereas the ubiquitination of proteins can be monitored with classic biochemical methods, the mapping of modified side chains proves to be challenging. More recently, mass spectrometry has been applied to identify ubiquitinated proteins and also their sites of modification. Typically, liquid chromatography tandem mass spectrometry (LC-MS/MS) based approaches, including collision-induced fragmentation (CID), have been successfully used in the past. However, a potential difficulty arises from the unstable nature of this modification, and also that the isopeptide bond linkage between C-terminal glycine and the N(epsilon) lysyl side chain is susceptible to fragmentation under these conditions. Here we investigate the utility of electron-transfer dissociation (ETD)-based fragmentation to detect ubiquitination sites in proteins. Our results indicate that ETD can provide alternative fragmentation patterns that allow detection of gly-gly-modified lysyl side chains, in particular z+1 fragment ions derived from triply charged precursor ions. We subsequently applied ETD fragmentation-based analysis and detected novel ubiquitination sites on DNA polymerase B1 that were not easily observed using CID. We conclude that ETD can provide significant alternative fragmentation information that complements CID-derived data to improve the coverage when mapping ubiquitination sites in proteins.
Collapse
Affiliation(s)
- Frank Sobott
- Oxford Centre for Gene Function/OXION, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Liao L, McClatchy DB, Yates JR. Shotgun proteomics in neuroscience. Neuron 2009; 63:12-26. [PMID: 19607789 DOI: 10.1016/j.neuron.2009.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 11/27/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used to address basic and clinical questions in biomedical research through studies of differential protein expression, protein-protein interactions, and posttranslational modifications. The complex structural and functional organization of the human brain warrants the application of high-throughput, systematic approaches to understand the functional alterations under normal physiological conditions and the perturbations of neurological diseases. This primer focuses on shotgun-proteomics-based tandem mass spectrometry for the identification of proteins in a complex mixture. It describes the basic concepts of protein differential expression analysis and posttranslational modification analysis and discusses several strategies to improve the coverage of the proteome.
Collapse
Affiliation(s)
- Lujian Liao
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Ryu KS, Choi YS, Ko J, Kim SO, Kim HJ, Cheong HK, Jeon YH, Choi BS, Cheong C. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. BMB Rep 2009; 41:852-7. [PMID: 19123975 DOI: 10.5483/bmbrep.2008.41.12.852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.
Collapse
|
35
|
Abstract
Understanding disease-associated cellular defects at a molecular level is critical for the development of pharmacological intervention strategies. Recent breakthroughs in microarray and sequencing technologies have provided powerful tools to rapidly reveal the cellular defects caused by alterations in the genome or transcriptome. However, the picture of how the cellular proteome is affected in a disease state and how changes in DNA and RNA affect protein function is often incomplete. This is perhaps not surprising because the functions of proteins are not just determined by primary sequence and abundance, but are under the control of many regulatory mechanisms. Here, we highlight several recent advances in proteomics technologies that are being developed to generate comprehensive human proteome maps and discuss them in the context of strategies that have been developed in simple model organisms. Chemical biology will play a critical role in drafting a map of the proteome with functional information. Chemical genetic approaches that use high-throughput small molecule screening have resulted in the public availability of small molecule datasets through web interfaces such as PubChem. With such approaches, the opportunities to investigate disease and to explore the proteome with chemistry are rapidly increasing. In addition, new tools are being developed to probe protein function. Here we highlight recent developments in chemical biology and the exciting opportunities that are arising with them.
Collapse
Affiliation(s)
- Huib Ovaa
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam.
| | | |
Collapse
|
36
|
Affiliation(s)
- Caroline Grabbe
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | | |
Collapse
|
37
|
Bazile F, Gagné JP, Mercier G, Lo KS, Pascal A, Vasilescu J, Figeys D, Poirier GG, Kubiak JZ, Chesnel F. Differential proteomic screen to evidence proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryos. J Proteome Res 2008; 7:4701-14. [PMID: 18823142 DOI: 10.1021/pr800250x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification of proteins via ubiquitination plays a crucial role in numerous vital functions of the cell. Polyubiquitination is one of the key regulatory processes involved in regulation of mitotic progression. Here we describe a differential proteomic screen dedicated to identification of novel proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryo. Mutated recombinant His6-tagged ubiquitin (Ubi (K48R)) was added to mitotic extract from which we purified conjugated proteins, as well as associated proteins in nondenaturing conditions by cobalt affinity chromatography. Proteins eluted from Ubi (K48R) supplemented and control extracts were compared by LC-MS/MS analysis after monodimensional SDS-PAGE. A total of 144 proteins potentially ubiquitinated or associated with them were identified. Forty-one percent of these proteins were shown to be involved in ubiquitination and/or proteasomal degradation pathway confirming the specificity of the screen. Twelve proteins, among them ubiquitin itself, were shown to carry a "GG" or "LRGG" remnant tag indicating their direct ubiquitination. Interestingly, sequence analysis of ubiquitinated substrates carrying these tags indicated that in Xenopus cell-free embryo extract supplemented with Ubi (K48R) the majority of polyubiquitination occurred through lysine-11 specific ubiquitin chain polymerization. The potential interest in this atypical form of ubiquitination as well as usefulness of our method in analyzing atypical polyubiquitin species is discussed.
Collapse
Affiliation(s)
- Franck Bazile
- CNRS UMR 6061, Institute of Genetics & Development, University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, 35 043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|