1
|
Maik-Rachline G, Wortzel I, Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021; 10:cells10123466. [PMID: 34943973 PMCID: PMC8699841 DOI: 10.3390/cells10123466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.
Collapse
|
2
|
Chen B, Xu X, Lin DD, Chen X, Xu YT, Liu X, Dong WG. KRT18 Modulates Alternative Splicing of Genes Involved in Proliferation and Apoptosis Processes in Both Gastric Cancer Cells and Clinical Samples. Front Genet 2021; 12:635429. [PMID: 34290732 PMCID: PMC8287183 DOI: 10.3389/fgene.2021.635429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Keratin 18 (KRT18), one of the most abundant keratins in epithelial and endothelial cells, has been reported to be aberrantly expressed in many malignancies and extensively regarded as a biomarker and important regulator in multiple cancers, including gastric cancer (GC). But the molecular regulatory mechanisms of KRT18 in GC patients and cells are largely unknown. In the present study, we analyzed the expression level of KRT18 in 450 stomach adenocarcinoma tissue samples from TCGA database and found a significantly higher expression level in tumor tissues. We then explored the potential functions of KRT18 in AGS cells (human gastric adenocarcinoma cell line) by KRT18 knockdown using siRNA and whole transcriptome RNA-seq analysis. Notably, KRT18 selectively regulates expression of cell proliferation and apoptotic genes. Beyond this, KRT18 affects the alternative splicing of genes enriched in apoptosis, cell cycle, and other cancer-related pathways, which were then validated by reverse transcription-quantitative polymerase chain reaction approach. We validated KRT18-KD promoted apoptosis and inhibited proliferation in AGS cells. We then used RNA-seq data of GC samples to further demonstrate the modulation of KRT18 on alternative splicing regulation. These results together support the conclusion that KRT18 extensively modulates diverse alternative splicing events of genes enriched in proliferation and apoptosis processes. And the dysregulated splicing factors at transcriptional or posttranscriptional level by KRT18 may contribute to the alternative splicing change of many genes, which expands the functional importance of keratins in apoptotic and cell cycle pathways at the posttranscriptional level in GC.
Collapse
Affiliation(s)
- Biao Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-dan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang-tao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Wang A, Ji Z, Xuan R, Zhao X, Hou L, Li Q, Chu Y, Chao T, Wang J. Differentially Expressed MiRNAs of Goat Submandibular Glands Among Three Developmental Stages Are Involved in Immune Functions. Front Genet 2021; 12:678194. [PMID: 34211501 PMCID: PMC8239366 DOI: 10.3389/fgene.2021.678194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Submandibular glands (SMGs) are one of the primary components of salivary glands in goats. The proteins and biologically active substances secreted by the SMGs change with growth and development. Our previous studies showed that most of the differentially expressed genes in the SMGs of goats at different developmental stages are involved in immune-related signaling pathways, but the miRNA expression patterns in the same tissues are unknown. The aim of this study was to reveal the expression profile of miRNAs at three different developmental stages, detect differentially expressed miRNAs (DE miRNAs) and predict disease-related DE miRNAs. SMG tissue samples were collected from groups of 1-month-old kids, 12-month-old maiden goats and 24-month-old adult goats (three samples from each group), and high-throughout transcriptome sequencing was conducted. A total of 178, 241 and 7 DE miRNAs were discovered between 1-month-old kids and 12-month-old maiden goats, between 1-month-old kids and 24-month-old adult goats, and between 12-month-old maiden goats and 24-month-old adult goats, respectively. Among these DE miRNAs, 88 DE miRNAs with medium or high expression levels (TPM ≥50) were classified into five expression pattern clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that some of the predicted target genes of the DE miRNAs in the five clusters were enriched in disease-related GO terms and pathways. MiRNA target genes in significant pathways were significantly enriched in Hepatitis B (FDR = 9.03E-10) and Pathways in cancer (FDR = 4.2E-10). Further analysis was performed with a PPI network, and 10 miRNAs were predicted to play an important role in the occurrence and prevention of diseases during the growth and development of goats.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunpeng Chu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
4
|
Gęgotek A, Domingues P, Skrzydlewska E. Proteins involved in the antioxidant and inflammatory response in rutin-treated human skin fibroblasts exposed to UVA or UVB irradiation. J Dermatol Sci 2018; 90:241-252. [PMID: 29455850 DOI: 10.1016/j.jdermsci.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rutin, due to its polyphenolic structure, has antioxidant properties and can be used as a cytoprotective compound against UV-induced effects on skin cells. OBJECTIVE The aim of this study was to examine the effect of rutin on proteomic profile in human skin fibroblasts irradiated with UV dose that induces apoptosis. METHODS Proteome analysis based on the results obtained by the QExactive OrbiTrap mass spectrometer. RESULTS Results show that rutin treatment more strongly protects against UVA-induced rather than UVB-induced increases in the total expression of proteins involved in antioxidant (such as SOD, TrxR, and Prxs 1/2) and inflammatory response (e.g., IL-17F, PAK2, and YWHAZ). However, in the case of UVB-irradiated cells, rutin additionally enhances the levels of disulfide-isomerase - an enzyme that is responsible for the formation and breakage of disulfide bonds. Moreover, UVB radiation promotes rutin-Keap1 adduct formation, which leads to the activation of Nrf2, a factor that is responsible for the synthesis of cytoprotective proteins. Furthermore, rutin partially prevents UV-induced apoptosis by restoring the physiological levels of p53, cytochrome c, and cell cycle and apoptosis regulator protein 2 that were increased following irradiation. CONCLUSION In conclusion, our results show that rutin effectively prevents UV-induced damages associated with proinflammatory and prooxidative activity and protects cells against apoptosis.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Portugal
| | | |
Collapse
|
5
|
Zhang J, Yu X, Yu Y, Gong Y. MicroRNA expression analysis during FK506-induced osteogenic differentiation in rat bone marrow stromal cells. Mol Med Rep 2017; 16:581-590. [PMID: 28560399 PMCID: PMC5482066 DOI: 10.3892/mmr.2017.6655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
FK506 (also known as tacrolimus) is a potent immunosuppressive agent that is widely used in the treatment of graft-rejection and autoimmune diseases. FK506 has attracted additional attention owing to its potential role in osteogenic differentiation and bone formation. MicroRNAs (miRNAs) have been demonstrated to serve important roles in the regulation of osteogenic differentiation; however, identification of specific miRNAs and their roles in regulating FK506-induced osteogenic differentiation have been poorly examined. In the present study, osteodifferentiation of rat bone marrow stromal cells (BMSCs) was induced with varying concentrations of FK506 (5–5,000 nM) for 3, 7 and 14 days. Differentially expressed miRNAs were profiled using miRNA array, verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and subjected to gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results from the present study identified a subset of miRNAs that were differentially expressed, of which five upregulated miRNAs (miR-106b-5p, miR-101b-3p, miR-193a-3p, miR-485-3p and miR-142-3p) and four downregulated miRNAs (miR-27a-3p, miR-207, miR-218a-2-3p and let-7a-5p) were confirmed by RT-qPCR. GO and KEGG analysis revealed that the predicted target genes of these miRNAs are involved in multiple biological processes and signaling pathways, including cell differentiation and the mitogen-activated protein kinase (MAPK) signaling pathway. Verification of the miRNA-target genes revealed that Smad5, Jagged 1 and MAPK9 were significantly upregulated, whereas Smad7, BMP and activin membrane-bound inhibitor, and dual-specificity phosphatase 2 were significantly downregulated during FK506-induced osteodifferentiation. The present study may provide an experimental basis for further research on miRNA functions during FK506-induced osteogenic differentiation in rat BMSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoping Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yiming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
6
|
Prause M, Mayer CM, Brorsson C, Frederiksen KS, Billestrup N, Størling J, Mandrup-Poulsen T. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res 2016; 2016:1312705. [PMID: 26962537 PMCID: PMC4745310 DOI: 10.1155/2016/1312705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022] Open
Abstract
The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 mRNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β-induced INS-1 cell apoptosis associated with decreased 46 kDa isoform JNK protein phosphorylation and attenuated Myc expression. Transient knockdown of Myc also prevented IL-1β-induced apoptosis as well as caspase 3 cleavage. JNK2 shRNA potentiated IL-1β-induced apoptosis and caspase 3 cleavage, whereas JNK3 shRNA did not affect IL-1β-induced β-cell death compared to nonsense shRNA expressing INS-1 cells. In conclusion, JNK1 mediates INS-1 cell death associated with increased Myc expression. These findings underline the importance of differentiated targeting of JNK subtypes in the development of inflammatory β-cell failure and destruction.
Collapse
Affiliation(s)
- Michala Prause
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- *Michala Prause:
| | | | - Caroline Brorsson
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | | | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
7
|
Prause M, Christensen DP, Billestrup N, Mandrup-Poulsen T. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis. PLoS One 2014; 9:e87067. [PMID: 24475223 PMCID: PMC3901710 DOI: 10.1371/journal.pone.0087067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1 cell lines stably expressing JNK subtype specific shRNAs to understand the differential roles of the individual JNK isoforms. JNK activity was increased after 3 h of palmitate and high glucose exposure associated with increased expression of ER and mitochondrial stress markers. JNK1 shRNA expressing INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect palmitate and high glucose induced apoptosis or ER stress markers, but increased Puma mRNA expression compared to non-sense shRNA expressing INS1 cells. Finally, JNK3 shRNA expressing INS1 cells did not induce apoptosis compared to non-sense shRNA expressing INS1 cells when exposed to palmitate and high glucose but showed increased caspase 9 and 3 cleavage associated with increased DP5 and Puma mRNA expression. These data suggest that JNK1 protects against palmitate and high glucose-induced β-cell apoptosis associated with reduced ER and mitochondrial stress.
Collapse
Affiliation(s)
- Michala Prause
- Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Dan Ploug Christensen
- Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Chomwisarutkun K, Murani E, Ponsuksili S, Wimmers K. Gene expression analysis of mammary tissue during fetal bud formation and growth in two pig breeds--indications of prenatal initiation of postnatal phenotypic differences. BMC DEVELOPMENTAL BIOLOGY 2012; 12:13. [PMID: 22537077 PMCID: PMC3527354 DOI: 10.1186/1471-213x-12-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/12/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The mammary gland is key to all mammal species; in particular in multiparous species like pigs the number and the shape of functional mammary gland complexes are major determinants of fitness. Accordingly, we aimed to catalog the genes relevant to mammogenesis in pigs. Moreover, we aimed to address the hypothesis that the extent and timing of proliferation, differentiation, and maturation processes during prenatal development contribute to postnatal numerical, morphological and functional properties of the mammary gland. Thus we focused on differentially expressed genes and networks relevant to mammary complex development in two breeds that are subject to different selection pressure on number, shape and function of teats and show largely different prevalence of non-functional inverted teats. The expression patterns of fetal mammary complexes obtained at 63 and 91 days post conception (dpc) from German Landrace (GL) and Pietrain (PI) were analyzed by Affymetrix GeneChip Porcine Genome Arrays. RESULTS The expression of 11,731 probe sets was analysed between the two stages within and among breeds. The analysis showed the largest distinction of samples of the breed GL at 63 dpc from all other samples. According to Ingenuity Pathways Analysis transcripts with abundance at the four comparisons made (GL63-GL91, PI63-PI93, GL63-PI63 and GL91-PI91) were predominantly assigned to biofunctions relevant to 'cell maintenance, proliferation, differentiation and replacement', 'organismal, organ and tissue development' and 'genetic information and nucleic acid processing'. Moreover, these transcripts almost exclusively belong to canonical pathways related to signaling rather than metabolic pathways. The accumulation of transcripts that are up-regulated in GL compared to PI indicate a higher proliferating activity in GL, whereas processes related to differentiation, maturation and maintenance of cells are more prominent in PI. Differential expression was validated by quantitative RT-PCR of five genes (GAB1, MAPK9, PIK3C2B, PIK3C3 and PRKCH) that are involved in several relevant signaling pathways. CONCLUSIONS The results indicate that mammary complex development in PI precedes GL. The differential expression between the two breeds at fetal stages likely reflects the prenatal initiation of postnatal phenotypes concerning the number and shape as well as functionality of teats.
Collapse
Affiliation(s)
- Kunsuda Chomwisarutkun
- Leibniz Institute for Farm Animal Biology, Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | | | | |
Collapse
|
9
|
Wang P, Lu Y, Li C, Li N, Yu P, Ma D. Novel transcript variants of TRAIL show different activities in activation of NF-κB and apoptosis. Life Sci 2011; 89:839-46. [PMID: 21952139 DOI: 10.1016/j.lfs.2011.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/29/2011] [Accepted: 09/02/2011] [Indexed: 12/19/2022]
Abstract
AIMS Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has many transcript variants, but whether they possess distinct function is not completely known. In the present study, we compared the function of these TRAIL variants. MAIN METHODS A bioinformatics analysis was performed to examine potential TRAIL variants. For the functional study, over-expression of TRAIL isoforms was used to examine their NF-κB inducing and apoptotic activities in both cancer and normal cells. Moreover, soluble TRAIL E4 variant protein was expressed and purified in prokaryotic cells, and was used for apoptotic assay. KEY FINDINGS We cloned seven truncated TRAIL variants, designated as AK, E2, E3, E4, DA, BX424, and BX439. In comparison with the wild type TRAIL protein expressed from full-length RefSeq, over-expression of all these TRAIL variants activated NF-κB and its targeting genes in human cells at varying degrees. Some isoforms including BX424, DA and E4 even showed NF-κB, IL8, CCL4 and CCL20 promoter activating activity stronger than the wild type protein. All truncated variant proteins had no toxicity to normal human cells, similar to the wild type protein; however, they all failed to induce apoptosis in cancer cells that are sensitive to TRAIL. Recombinant soluble TRAIL E4 protein also failed to antagonize TRAIL-induced apoptosis in cancer cells. SIGNIFICANCE Truncated TRAIL variant proteins lost apoptotic activity but retained or even enhanced the NF-κB activating potentials, these results suggest that TRAIL variants may play roles in non-apoptotic cellular processes that are more important than we previously thought.
Collapse
Affiliation(s)
- Pingzhang Wang
- Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191, PR China.
| | | | | | | | | | | |
Collapse
|