1
|
He K, Xia L, Zhang J. LPS ameliorates renal ischemia/reperfusion injury via Hsp27 up-regulation. Int Urol Nephrol 2017; 50:571-580. [PMID: 29124510 DOI: 10.1007/s11255-017-1735-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/25/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We have recently reported lipopolysaccharide (LPS) pretreatment attenuated renal ischemia/reperfusion injury (IRI), but the exact mechanism remains to be well elucidated. It was reported that heat shock protein (Hsp) 27 was up-regulated after administration of LPS, but whether a direct link existed between Hsp27 up-regulation and LPS-induced protection against renal IRI is still unknown. METHODS Mice were exposed to IRI or sham procedure, with pretreatment of LPS or not. Quercetin, an inhibitor of Hsp27 synthesis, was used, and an RNA interference with adenovirus vector using short hairpin RNA targeting Hsp27 was developed for inhibition of Hsp27 in mice. In addition, mice trans-infected with adenovirus vector encoding Hsp27 were used to testify the role of Hsp27 overexpression in LPS-induced renoprotection. Renal function, histological damage, inflammatory reaction, oxidative stress and apoptosis indices were measured. Western blot analysis was used to detect expression of Hsp27. RESULTS We found LPS pretreatment stimulated renal up-regulation of Hsp27 and reduced renal IRI proven by less renal dysfunction, histological damage, inflammatory reaction, oxidative stress and apoptosis. It was observed that inhibition of Hsp27 synthesis by Quercetin abolished LPS-induced renoprotective effects. After renal knockdown of Hsp27, LPS-induced tolerance against renal IRI was largely removed. Mice with Hsp27 overexpression showed significantly improved renal function after IRI and LPS combined with Hsp27 overexpression had a synergistic effect on protection against renal IRI. CONCLUSION Administration of LPS produces protective effects against renal IRI via Hsp27 up-regulation. Preconditional Hsp27 up-regulation might have a great potential for the treatment of renal IRI via ameliorating apoptosis.
Collapse
Affiliation(s)
- Kang He
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Duan YF, An Y, Zhu F, Jiang Y. Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats. Hepatobiliary Pancreat Dis Int 2017; 16:387-394. [PMID: 28823369 DOI: 10.1016/s1499-3872(17)60006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/23/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. METHODS A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. RESULTS Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all P<0.05). Compared with the sham and RIPC groups, elevated miR-34a expressions were found in I/R and RIPC+I/R groups (P<0.05). MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups (all P<0.05). CONCLUSION RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions.
Collapse
Affiliation(s)
- Yun-Fei Duan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yong An
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Feng Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
3
|
Kim S, Kim HY, Kim JH, Choi JH, Ham WK, Jeon YJ, Kang H, Kim TY. Enhancement of potency and stability of human extracellular superoxide dismutase. BMB Rep 2015; 48:91-6. [PMID: 24856831 PMCID: PMC4352618 DOI: 10.5483/bmbrep.2015.48.2.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 01/13/2023] Open
Abstract
Cells express several antioxidant enzymes to scavenge reactive oxygen species (ROS) responsible for oxidative damages and various human diseases. Therefore, antioxidant enzymes are considered biomedicine candidates. Among them, extracellular superoxide dismutase (SOD3) had showed prominent efficacy against asthma and inflammation. Despite its advantages as a biomedicine, the difficulty in obtaining large quantity of active recombinant human SOD3 (rhSOD3) has limited its clinical applications. We found that a significant fraction of overexpressed rhSOD3 was composed of the inactive apo-enzyme and its potency against inflammation depended on the rate of metal incorporation. Also, purified rhSOD3 was unstable and lost its activity very quickly. Here, we suggest an ideal preparative method to express, purify, and store highly active rhSOD3. The enzymatic activity of rhSOD3 was maximized by incorporating metal ions into rhSOD3 after purification. Also, albumin or polyethylene glycol prevented rapid inactivation or degradation of rhSOD3 during preparative procedures and long-term storage.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040; New Drug Development Center, Daegu-Gyungpook Medical Innovation Foundation, Daegu 701-310, Korea
| | - Hae-Young Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | - Jung-Ho Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | - Jung-Hye Choi
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | - Won-Kook Ham
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | - Yoon-Jae Jeon
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | - Hara Kang
- Division of Life Science, College of Life Science and Bioengineering, Incheon National University, Incheon 406-772, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| |
Collapse
|
4
|
Jiang YH, Sun W, Li W, Hu HZ, Zhou L, Jiang HH, Xu JX. Calycosin-7-O-β-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:315. [PMID: 26346982 PMCID: PMC4562353 DOI: 10.1186/s12906-015-0839-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
Background Dysfunction of vascular endothelium is implicated in many pathological situations. Cytoskeleton plays an importance role in vascular endothelial permeability barrier and inflammatory response. Many Chinese herbs have the endothelial protective effect, of which, “Astragalus membranaceus” is a highly valued herb for treatment of cardiovascular and renal diseases in traditional Chinese medicine, In this study, we tested whether calycosin-7-O-β-D-glucoside (Calycosin), a main effective monomer component of “Astragalus membranaceus”, could protect endothelial cells from bacterial endotoxin (LPS)-induced cell injury. Methods Endothelial cell injury was induced by exposing human umbilical vein endothelial cells (HUVECs) to LPS. The effects of calycosin on LPS-induced changes in cell viability, apoptosis rate, cell migration, nitric oxide synthase (NOS), generationof intracellular reactive oxygen species (ROS) and cytoskeleton organization were determined. Microarray assay was employed to screen the possible gene expression change. Based on the results of microarray assay, the expression profile of genes involved in Rho/ROCK pathway and AKT pathway were further evaluated with quantitative real-time RT-PCR or western blot methods. Results Calycosin improved cell viability, suppressed apoptosis and protected the cells from LPS-induced reduction in cell migration and generation of ROS, protein level of NOS at a comparable magnitude to that of Y27632 and valsartan. Similar to Y27632 and valsartan, Calycosin, also neutralized LPS-induced actomyosin contraction and vinculin protein aggregation. Microarray assay, real-time PCR and western blot results revealed that LPS induced expression of FN, ITG A5, RhoA, PI3K (or PIP2 in western blotting), FAK, VEGF and VEGF R2, and inhibited expression of MLCP. We believed multiple pathways involved in the regulation of calycosin on HUVECs. Calycosin are considered to be able to activate MLCP through promoting the generation of NO, decreasing PMLC, suppressing the cytoskeleton remodeling caused by activation of Rho/ROCK pathway and inhibiting AKT pathway by decreasing VEGF, VEGF R2 and PI3K level. Conclusion Calycosin protected HUVEC from LPS-induced endothelial injury, possibly through suppression of Rho/ROCK pathway and regulation of AKT pathway.
Collapse
|
5
|
Li Z, Wang Y. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1) exposed renal ischemia/reperfusion injury in rats. Toxicol Rep 2015; 2:1111-1116. [PMID: 28962452 PMCID: PMC5598411 DOI: 10.1016/j.toxrep.2015.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin) preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1) to protect against renal ischemia/reperfusion (I/R) injury (RI/RI) in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.
Collapse
Affiliation(s)
- Zhiming Li
- Center for Information Technology, Hexi University, 846 Huancheng North Road, Zhangye 734000, PR China
- Department of Pharmacology, Medical College, Hexi University, 24 Danxia East Road, Zhangye 734000, PR China
| | - Yumei Wang
- Center for Information Technology, Hexi University, 846 Huancheng North Road, Zhangye 734000, PR China
- Department of Pharmacology, Medical College, Hexi University, 24 Danxia East Road, Zhangye 734000, PR China
- Corresponding author at: Department of Pharmacology, Medical College, Hexi University, 24 Danxia East Road, Zhangye,734000, PR China.
| |
Collapse
|
6
|
A nitric oxide-donor furoxan moiety improves the efficacy of edaravone against early renal dysfunction and injury evoked by ischemia/reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:804659. [PMID: 25834700 PMCID: PMC4365375 DOI: 10.1155/2015/804659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/13/2015] [Indexed: 12/31/2022]
Abstract
Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, EDV) is a free-radical scavenger reduces organ ischemic injury. Here we investigated whether the protective effects of EDV in renal ischemia/reperfusion (I/R) injury may be enhanced by an EDV derivative bearing a nitric oxide- (NO-) donor furoxan moiety (NO-EDV). Male Wistar rats were subjected to renal ischemia (45 minutes), followed by reperfusion (6 hours). Administration of either EDV (1.2–6–30 µmol/kg, i.v.) or NO-EDV (0.3–1.2–6 µmol/kg, i.v.) dose-dependently attenuated markers of renal dysfunction (serum urea and creatinine, creatinine clearance, urine flow, urinary N-acetyl-β-D-glucosaminidase, and neutrophil gelatinase-associated lipocalin/lipocalin-2). NO-EDV exerted protective effects in the dose-range 1.2–6 µmol/kg, while a higher dose (30 µmol/kg) was needed to obtain protection by EDV. Both EDV and NO-EDV modulated tissue markers of oxidative stress and lipid peroxidation. NO-EDV, but not EDV, activated endothelial NO synthase (NOS) and blunted I/R-induced upregulation of inducible NOS, secondary to modulation of Akt and NF-κB activation, respectively. Besides NO-EDV administration inhibited I/R-induced IL-1β, IL-18, IL-6, and TNF-α overproduction. Overall, these findings demonstrate that the NO-donor moiety contributes to the protection against early renal I/R injury and suggest that NO-donor EDV codrugs are worthy of additional study as innovative pharmacological tools.
Collapse
|
7
|
Ziypak T, Halici Z, Alkan E, Akpinar E, Polat B, Adanur S, Cadirci E, Ferah I, Bayir Y, Karakus E, Mercantepe T. Renoprotective effect of aliskiren on renal ischemia/reperfusion injury in rats: electron microscopy and molecular study. Ren Fail 2014; 37:343-54. [DOI: 10.3109/0886022x.2014.991327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Zhang J, Li JH, Wang L, Han M, Xiao F, Lan XQ, Li YQ, Xu G, Yao Y. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. ACTA ACUST UNITED AC 2014; 34:516-520. [PMID: 25135720 DOI: 10.1007/s11596-014-1308-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Nephrology, Subsidiary of the Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jun-Hua Li
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Wang
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Han
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Qin Lan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue-Qiang Li
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Xu
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ying Yao
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Shin MJ, Kim DW, Lee YP, Ahn EH, Jo HS, Kim DS, Kwon OS, Kang TC, Cho YJ, Park J, Eum WS, Choi SY. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Free Radic Biol Med 2014; 67:195-210. [PMID: 24252591 DOI: 10.1016/j.freeradbiomed.2013.10.815] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 01/20/2023]
Abstract
Methylglyoxal (MG), a metabolite of glucose, is the major precursor of protein glycation and induces apoptosis. MG is associated with neurodegeneration, including oxidative stress and impaired glucose metabolism, and is efficiently metabolized to S-D-lactoylglutathione by glyoxalase (GLO). Although GLO has been implicated as being crucial in various diseases including ischemia, its detailed functions remain unclear. Therefore, we investigated the protective effect of GLO (GLO1 and GLO2) in neuronal cells and an animal ischemia model using Tat-GLO proteins. Purified Tat-GLO protein efficiently transduced into HT-22 neuronal cells and protected cells against MG- and H2O2-induced cell death, DNA fragmentation, and activation of caspase-3 and mitogen-activated protein kinase. In addition, transduced Tat-GLO protein increased D-lactate in MG- and H2O2-treated cells whereas glycation end products (AGE) and MG levels were significantly reduced in the same cells. Gerbils treated with Tat-GLO proteins displayed delayed neuronal cell death in the CA1 region of the hippocampus compared with a control. Furthermore, the combined neuroprotective effects of Tat-GLO1 and Tat-GLO2 proteins against ischemic damage were significantly higher than those of each individual protein. Those results demonstrate that transduced Tat-GLO protein protects neuronal cells by inhibiting MG- and H2O2-mediated cytotoxicity in vitro and in vivo. Therefore, we suggest that Tat-GLO proteins could be useful as a therapeutic agent for various human diseases related to oxidative stress including brain diseases.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702, Korea
| | - Yeom Pyo Lee
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Eun Hee Ahn
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Hyo Sang Jo
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 330-090, Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Taegu 702-702, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea.
| | - Soo Young Choi
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea.
| |
Collapse
|
10
|
Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production. Kidney Int 2014; 85:276-88. [DOI: 10.1038/ki.2013.342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
|
11
|
Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress. PLoS One 2011; 6:e25811. [PMID: 22022451 PMCID: PMC3192120 DOI: 10.1371/journal.pone.0025811] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 09/11/2011] [Indexed: 01/01/2023] Open
Abstract
Background Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress. Materials and Methods Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury. Results After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE). Conclusions Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions.
Collapse
|